Horm Metab Res 2002; 34(2): 62-66
DOI: 10.1055/s-2002-20527
Original Basic

© Georg Thieme Verlag Stuttgart · New York

Formation of Compound 305 Requires the Simultaneous Generation of Both Alloxan and GSH Radicals

H.  J.  Brömme 1 , W.  Mörke 2 , R.  Weinandy 3 , D.  Peschke 4 , E.  Peschke 4
  • 1 Institute of Pathophysiology, Martin Luther University, Halle-Wittenberg, Germany
  • 2 Institute of Analytic and Environmental Chemistry, Martin Luther University, Halle-Wittenberg, Germany
  • 3 Institute of Zoology, Martin Luther University, Halle-Wittenberg, Germany
  • 4 Institute of Anatomy and Cell Biology, Martin Luther University, Halle-Wittenberg, Germany
Further Information

Publication History

18 June 2001

11 October 2001

Publication Date:
04 March 2002 (online)

Abstract

This in vitro study investigates the conditions under which “compound 305” is formed. Using HPLC, ESR as well as UV spectroscopy, “compound 305” was largely separated and characterized. It has an absorption peak at 314 nm, which changes after reoxygenation to shorter wavelengths within hours. The retention time of “compound 305” amounts to 10.93 ± 0.042 min. The formation of “compound 305” does not depend on alloxan (ALX) or reduced glutathione (GSH), but most likely on the steady-state concentration of the paramagnetic derivatives of both reactants (ALX· and GS·). The alloxan radical (ALX·) is formed by either a one-electron transfer from e. g. GSH to alloxan or oxidation of dialuric acid. The concentration of the ALX· was determined to be 12 ± 3.6 µmol/l using the stable ultramarine radical as an ESR standard. ALX· is stable only under anaerobic conditions. It disappears within 2 min in air. Since formation of “compound 305” needs both ALX· as well as GS·, which are also necessary for the generation of reactive oxygen species (ROS), it is assumed that formation of “compound 305” diminishes the toxicity of alloxan.

  • 1 Winterborn C C, Munday R. Glutathione-mediated redox cycling of alloxan. Mechanism of SOD inhibition and metal-catalyzed ·OH formation.  Biochem Pharmacol. 1989;  38 271-277
  • 2 Munday R. Dialuric acid autoxidation. Effect of transition metals on the reaction rate and on the generation of ”active oxygen“ species.  Biochem Pharmacol. 1988;  37 409-413
  • 3 Brömme H J, Ebelt H, Peschke D, Peschke E. Alloxan acts as a prooxidant only under reducing conditions: influence of melatonin.  Cell Mol Life Sci. 1999;  55 487-493
  • 4 Brömme H J, Mörke W, Peschke E, Ebelt H, Peschke D. Scavenging effect of melatonin on hydroxyl radicals generated by alloxan.  J Pineal Res. 2000;  29 201-208
  • 5 Brömme H J, Weinandy R, Peschke D, Peschke E. Simultaneous quantitative determination of alloxan, GSH and GSSG by HPLC. Estimation of the frequency of redox cycling between alloxan and dialuric acid.  Horm Metab Res. 2001;  33 106-109
  • 6 Patterson J W, Lazarow A, Levey S. Alloxan and dialuric acid: their stabilities and ultraviolet absorption spectra.  J Biol Chem. 1949;  177 187-196
  • 7 Patterson J W, Lazarow A, Levey S. Reactions of alloxan and dialuric acid with the sulfhydryl group.  J Biol Chem. 1949;  177 197-204
  • 8 Resnik R A, Wolff A R. The reaction of alloxan with glutathione and protein.  Arch Biochem Biophys. 1956;  64 33-50
  • 9 Munday R, Ludwig K, Lenzen S. The relationship between the physicochemical properties and the biological effects of alloxan and several N-alkyl substituted alloxan derivatives.  J Endocrinol. 1993;  139 153-163
  • 10 Webb J L. Enzymes and metabolic inhibitors. Vol. III,. N.Y.; Acad Press 1966: 367-419
  • 11 Te-Tse Chang. The calibration methods and reference materials in ESR spectroscopy. Magnetic resonance. Review, vol. 9 (1 - 3). Gordon and Breach Sci Publ, USA 1984: 65-124
  • 12 Schössler W, Kirsch D, Lassmann G. Die Bestimmung der Spinkonzentration mit der paramagnetischen Elektronenresonanz.  Z Chem. 1973;  13 364-372
  • 13 Sakurai K, Ogiso T. Generation of alloxan radical in rat islet cells: participation of NADPH:cytochrome p 450 reductase.  Biol Pharm Bull. 1994;  17 1451-1455
  • 14 Murata M, Imida M, Inoue S, Kawanishi S. Metal-mediated DNA damage induced by diabetogenic alloxan in the presence of NADH.  Free Radical Biol Med. 1998;  25 586-595
  • 15 Lenzen S, Munday R. Thiol-group reactivity, hydrophilicity and stability of alloxan, its reduction products and its N-methyl derivatives and a comparison with ninhydrin.  Biochem Pharmacol. 1991;  42 1385-1391
  • 16 Halliwell B, Gutteridge J MC. Free radicals in biology and medicine. Third ed. Oxford: Oxford University Press 1999: 70-72

E. Peschke

Institute of Anatomy and Cell Biology · Martin Luther University Halle-Wittenberg ·

Grosse Steinstrasse 52 · 06097 Halle/Saale · Germany

Phone: + 49 (345) 557 1709 ·

Fax: + 49 (345) 557 4053

Email: elmar.peschke@medizin.uni-halle.de