Zusammenfassung
Einleitung: Der breiten Anwendung aktueller bildgebender Verfahren zur Klärung der Pathophysiologie des ischämischen Insults steht ein deutlicher Mangel an frühen prospektiven, standardisierten funktionellen elektroenzephalographischen Studien gegenüber. Methoden: In der vorliegenden prospektiven Studie wurden 25 konsekutive Patienten mit erstmaliger akuter, supratentorieller, zerebraler Ischämie ohne Anfallsvorgeschichte untersucht. Hierzu wurden 12 Stunden nach Symptombeginn 24-stündige Langzeit-EEGs abgeleitet. Das neurologische Defizit wurde mittels NIH Stroke Scale (NIHSS) und der Behinderungsgrad mit dem Barthel-Index (BI) zum Zeitpunkt der EEG-Ableitung sowie nach einem Jahr erfasst. Ergebnisse: Die geblindet durchgeführte EEG-Auswertung ergab drei hierarchische Gruppen: unspezifische Verlangsamungen (n = 9, Gruppe C), fokale hochgespannte Entladungen (n = 10, Gruppe B) und epileptiforme Entladungen (n = 6, Gruppe A). Die temporospatiale Evolution spezifischer, elektrischer Potenzialmuster ermöglichte eine verfeinerte Analyse der pathophysiologischen Abläufe. Eine deutlich verlangsamte Grundaktivität, die Manifestation kontralateraler Veränderungen und eine Rhythmisierung des Herdbefundes war positiv korreliert mit dem Auftreten steilerer Potenziale und epileptiformer Entladungen. Die EEG-Gruppen unterschieden sich in der NIHSS, im BI sowie bezüglich des Auftretens epileptischer Anfälle jeweils statistisch hoch signifikant (p < 0,0001). Alle Patienten der EEG-Gruppe C hatten ein gutes Outcome (NIHSS < 10 bzw. BI > 60) und keiner von ihnen entwickelte epileptische Anfälle (EA) (positiver Vorhersagewert [PV] 1; 95 %-Konfidenzintervall [KI]: 0,72 - 1). Alle Patienten der EEG-Gruppe A zeigten ein schlechtes Outcome (NIHSS > 20 bzw. BI < 20 oder Tod: PV 1; KI 0,61 - 1). 5 der 6 Patienten bekamen EA (PV 0,83; KI 0,36 - 1). Patienten mit EA wiesen eine signifikant erhöhte Mortalität auf (p < 0,025). Schlussfolgerung: Die vorliegenden Daten unterstreichen die Bedeutung von frühzeitigem EEG-Monitoring nach akuter, zerebraler Ischämie für ein erweitertes pathophysiologisches Verständnis ischämieassoziierter Anfälle und prognoserelevanter Faktoren.
Abstract
Introduction: There is substantial lack of well-designed functional electrophysiological studies with respect to pathophysiology and prognosis after cerebral ischaemia despite increasing progress in neuroimaging. Methods: We prospectively investigated 25 consecutive patients with acute first-ever supratentorial ischaemic stroke and no history of epilepsy. 24h-EEG monitoring was started within 12 hours after the onset of symptoms. The neurological deficit was assessed by NIH Stroke Scale (NIHSS) and Barthel Index (BI) during EEG recording and after 1 year. Results: Blinded EEG evaluation revealed 3 hierarchical classes: focal slowing (n = 9, group C), focal high voltage discharges (n = 10, group B) and epileptiform activity (n = 6, group A). Temporo-spatial EEG evolution was illustrated in reproducible time series and thus allowed a refined analysis of the underlying pathophysiology. Slowing-down of the background activity, occurrence of contralateral potentials and rhythmic focal slowing-down seemed to correlate with a higher incidence of high-voltage discharges and epileptiform activity. The EEG groups differed significantly (p < 0.0001) in NIHSS BI and in the occurrence of seizures. All patients of group C had a good outcome (NIHSS < 10, BI > 60) and no one developed seizures (predictive value [pv] = 1; 95 % confidence interval [CI] 0,72 - 1). In contrast all patients of group A had a poor outcome (NIHSS > 20, BI < 20 or death; PV 1, CI 0,61 - 1) and 5 of them developed seizures (PV 0,83; CI 0,36 - 1). Patients with epileptic seizures had a significant higher mortality (p < 0.025) Conclusions: Our data underline the importance of early post-ischaemic EEG recording both for understanding pathophysiological mechanisms of post-ischaemic seizures and the prognosis of acute stroke.
Key words
Acute stroke - EEG - Seizures - Outcome
Literatur
1
American Electroencephalographic Society .
Guideline four: standards of practice in clinical electroencephalography.
J Clin Neurophysiol.
1994;
11
14-15
2
Arboix A, Garcia-Eroles L, Massons J B, Oliveres M, Comes E.
Predictive factors of early seizures after acute cerebrovascular disease.
Stroke.
1997;
28
1590-1594
3
Asconape J J, Penry J K.
Poststroke seizures in the elderly.
Clin Geriatr Med.
1991;
7
483-492
4
Astrup J, Symon L, Branston N M, Lassen N A.
Cortical evoced potential and extracellular K+ and H+ at critical levels of brain ischemia.
Stroke.
1977;
8
51-57
5
Back T, Kohno K, Hossmann K A.
Cortical negativ DC deflections following middle cerebral artery occlusion and KCl-induced spreading depression: Effect on blood flow, tissue oxygenation, and electroencephalogram.
J Cereb Blood Flow Metab.
1994;
14
12-19
6 Bladin C F, Norris J W. Stroke and seizures/epilepsy. In: Welch KMA, Reis DJ, Weir B, Caplan LR, Siesjö BK (eds) Primer on cerebrovascular diseases. San Diego, London, Boston, New York, Sydney, Tokyo, Toronto; Academic Press 1997: 355-357
7
Bogousslavsky J, Martin R, Regil F, Desplant P-A, Bolyn S.
Persistent worsening of stroke sequelae after delayed seizures.
Arch Neurol.
1992;
49
385-388
8
Brott T, Adams H P, Olinger C P, Marler J R, Barsan W G, Biller J, Spilker J, Holleran R, Eberle R, Hertzberg V.
Measurement of acute cerebral infarction: a clinical examination scale.
Stroke.
1989;
20
864-870
9
Cendes F, Andermann F, Carpenter S, Zatorre R J, Cashman N R.
Temporal Lobe Epilepsy Caused by Domoic Acid Intoxication.
Ann Neurol.
1995;
37
123-126
10
Cillessen J PM, van Huffelen A C, Kappelle L J, Algra A, van Gijn J.
Electroencephalography Improves the Prediction of Functional Outcome in the Acute Stage of Cerebral Ischemia.
Stroke.
1994;
25
1968-1972
11
Coyle J T, Puttfarcken P.
Oxidative stress, glutamate and neurodegenerative disorders.
Science.
1993;
262
689-695
12
de Weerd A W, Veldhuizen R J, Veering M M, Poortvliet D CJ, Jonkman E J.
Recovery from cerebral ischemia EEG, cerebral blood flow and clinical symptomatology in the first three years after a stroke.
Electroencephalogr Clin Neurophysiol.
1988;
70
197-204
13
Dreifuss F E.
Proposal for revised clinical and electroencephalic classification of epileptic seizures.
Epilepsia.
1981;
22
489
14
Fabricius M, Jensen L H, Lauritzen M.
Microdialysis of interstitial amino acids during spreading depression and anoxic depolarization in rat neocortex.
Brain Res.
1993;
612
61-69
15
Faught E.
Current Role of Electroencephalography in Cerebral Ischemia.
Stroke.
1993;
24
609-613
16
Faught E.
Epidemiology and drug treatment of epilepsy in elderly people.
Drugs Aging.
1999;
15
255-269
17
Giaquinto S, Cobianchi A, Macera F, Nolfe G.
EEG recordings in the course of recovery from stroke.
Stroke.
1994;
25
2204-2209
18
Gupta S R, Naheedy M H, Elias D, Rubino F A.
Postinfarction Seizures. A Clinical Study.
Stroke.
1988;
19
1477-1481
19
Hauser W A, Ramirez-Lassepas M, Rosenstein R.
Risk for seizures and epilepsy following cerebrovascular insults.
Epilepsia.
1984;
25
666
20
Heiss W D, Graf R, Wienhard K, Löttgen J, Saito R, Fujita T, Rosner G, Wagner R.
Dynamic penumbra demonstrated by sequential multitracer PET after middle cerebral artery occlusion in cats.
J Cereb Blood Flow Metab.
1994;
14
892-902
21
Holmes G L.
The Electroencephalogram as a predictor of seizures following cerebral infarction.
Clin Electroencephalogr.
1980;
11
83-86
22
Hossmann K A.
Viability Thresholds and the Penumbra of Focal Ischemia.
Ann Neurol.
1994;
36
557-564
23
Jasper H H.
The ten-twenty system of the International Federation.
Electroencephalogr Clin Neurophysiol.
1958;
10
371-375
24
Kayser-Gatchalian M C, Neuendörfer B.
The prognostic value of EEG in ischemic cerebral insults.
Electroencephalogr Clin Neurophysiol.
1980;
49
608-617
25
Kilpatrick C J, Davis S M, Tress B M, Rossiter S C, Hopper J L, Vandendriesen M L.
Epileptic Seizures in Acute Stroke.
Arch Neurol.
1990;
47
157-160
26
Kilpatrick C J, Davis S M, Hopper J L, Rossiter S C.
Early seizures after acute stroke: Risk of late Seizures.
Arch Neurol.
1992;
49
509-511
27
Kohno K, Hoehn-Berlage M, Mies G, Back T, Hossmann K A.
Relationship between diffussion-weighted magnetic resonance images, cerebral blood flow and energy state in experimental brain infarction.
Magn Reson Imag.
1995;
13
73-80
28
Krumholz A, Sung G Y, Fisher R S, Barry E, Bergey G K, Grattan L M.
Complex partial status epilepticus accompanied by serious morbidity and mortality.
Neurology.
1995;
45
1499-1504
29
Lancman E L, Golimstok A, Norscini J, Granillo R.
Risk Factors for Developping Seizures After Stroke.
Epilepsia.
1993;
34
141-143
30
Lesser R P, Lüders H, Dinner D S, Morris H H.
Epileptic Seizures Due to Thrombotic and Embolic Cerebrovascular Disease in Older Patients.
Epilepsia.
1985;
26
622-630
31
Luhmann H J.
Ischemia and lesion induced imbalances in cortical function.
Prog Neurobiol.
1996;
48
131-166
32
Mahoney F I, Barthel D W.
Functional evaluation: The Barthel Index.
MD State Med.
1965;
14
61-65
33
Mayevsky A, Weiss H R.
Cerebral blood flow and oxygen consumption in cortical spreading depression.
J Cereb Blood Flow Metab.
1991;
11
829-836
34
Meyer F B.
Calcium, neuronal hyperexcitability and ischemic injury.
Brain Res.
1989;
14
227-243
35
Mies G, Iijama T, Hossmann K A.
Correlation between peri-infarct DC shifts and ischemic neuronal damage in rat.
Neuroreport.
1993;
4
709-711
36
Mies G, Paschen W.
Regional changes of blood flow, glucose, and ATP content determined on brain sections during a single passage of spreading depression in rat brain cortex.
Exp Neurol.
1984;
84
249-258
37
Nedergaard M, Astrup J.
Infarct rim: effect of hyperglycemia on direct current potential and (14C)2-deoxyglucose phosphorylation.
J Cereb Blood Flow Metab.
1986;
6
607-615
38
Nedergaard M, Hansen A J.
Spreading depression is not associated with neuronal injury in the normal brain.
Brain Res.
1993;
449
395-398
39
Nuwer M.
Assessment of digital EEG, quantitative EEG, and EEG brain mapping: report of the American Academy of Neurology and the American Clinical Neurophysiology Society.
Neurology.
1997;
49
277-292
40
Pohlmann-Eden B, Hoch D B, Cochius J, Chiappa K.
Significance of Subclinical Epileptiform Processes After Stroke: Results of a Preliminary Prospective Study.
Epilepsia.
1995;
36, Suppl 3
S88
41
Pohlmann-Eden B, Hoch D B, Cochius J, Hennerici M G.
Stroke and epilepsy-Part I: Epidemiology and Risk Factors.
Cerebrovasc Dis.
1996;
6
332-338
42 Pohlmann-Eden B, Mager R D, Hoch D B, Cochius J I. The significance of subclinical epileptiform activity after stroke. In: Stalberg E, Deweerd AW, Zidor J (eds) Neurophysiology. Bologna, Italy; Monduzzi Editore 1998: 523-532
43
Pohlmann-Eden B, Fatar M, Hennerici M G.
The „PCI (Preserved Cortical Island) - sign” is highly predictive of postischemic seizures.
Cerebrovasc Disease.
2001;
12
282
44
Röther J, de Crespigny A J, D'Arceuil H, Moseley M E.
MR detection of cortical spreading depression immediatley after fokal ischemia in the rat.
J Cereb Blood Flow Metab.
1996;
16
214-220
45
Rothman S M, Olney J W.
Glutamate and the pathophysiology of hypoxic-ischemic brain damage.
Ann Neurol.
1986;
19
105-111
46
Sachs L.
Vertrauensbereiche einer beobachteten Häufigkeit. Angewandte Statistik.
Springer.
1996;
8. Auflage
433-443
47
Sachs L.
Der so genannte „exakte Test” von RA Fisher auf Unabhängigkeit. Angewandte Statistik.
Springer.
1996;
8. Auflage
477-480
48
Sainio K, Stenberg D, Keskimäki I, Muuronen A, Kaste M.
Visual and Spectral EEG Analysis in the Evaluation of the Outcome Patients with Ischemic Brain Infarction.
Electroencephalogr Clin Neurophysiol.
1983;
56
117-124
49
Schreiber S S, Sun N, Tocco G, Baudry M, de Giorgio C M.
Expression of neuron-specific enolase in adult rat brain following status epilepticus.
Exp Neurol.
1999;
159
329-331
50
Schuhman E M, Madison D V.
Nitric oxide and synaptic function.
Ann Rev Neurosci.
1994;
17
153-183
51
Schwarcz R, Meldrum B.
Excitatory aminoacid antagonists provide a therapeutic approach to neurological disorders.
Lancet.
1985;
2
140-144
52
Shinohara M, Dollinger B, Brown G, Rapoport S, Sokoloff L.
Cerebral glucose utilization: local changes during and after recovery from spreading cortical depression.
Science.
1979;
203
188-190
53
Siesjö B K.
Cell damage in the brain: a speculative synthesis.
J Cereb Blood Flow Metab.
1981;
1
155-185
54
Siesjö B K, Bengtsson F.
Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis.
J Cereb Blood Flow Metab.
1989;
9
127-140
55
Soffer D, Melamed E, Assaf Y, Cotev S.
Hemispheric brain damage in unilateral status epilepticus.
Ann Neurol.
1986;
20
737-740
56
Strong A J, Venables G S, Gibson G.
The cortical ischaemic penumbra associated with occlusion of the middle cerebral artery in the cat: 1. Topography of changes in blood flow, potassium ion activity, and EEG.
J Cereb Blood Flow Metab.
1983;
3
86-96
57
Takano K, Latour L L, Formato J E, Carano R AD, Helmer K G, Hasegawa Y, Sotak C H, Fisher M.
The role of spreading depression in focal ischemia evaluated by diffusion mapping.
Ann Neurol.
1996;
39
308-318
58
Uemura Y, Kowall N W, Moskowitz M A.
Focal ischemia in rats causes time-dependent expression of c-fos protein immunoreactivity in widespread regions of ipsilateral cortex.
Brain Res.
1991;
552
99-105
59
Williams C E, Gunn A J, Mallard C, Gluckman P D.
Outcome after ischemia in the developing sheep brain: An electroencephalographic and histological study.
Ann Neurol.
1992;
31
14-21
Dr. med. E. I. Strittmatter
Neurologische Klinik · Universitätsklinikum Heidelberg
Im Neuenheimer Feld 400
69112 Heidelberg