References
1a
Zard SZ.
Angew. Chem. Int., Ed. Engl.
1997,
36:
672 ; and references cited
1b
Quiclet-Sire B.
Zard SZ.
Phosphorus, Sulfur Silicon Relat. Elem.
1999,
153
1c
Quiclet-Sire B.
Zard SZ.
Phosphorus, Sulfur Silicon Relat. Elem.
1999,
137 ; and references cited
2a
Kim S.
Song H.-J.
Choi T.-L.
Yoon J.-Y.
Angew. Chem. Int. Ed.
2001,
40(13):
2524
2b
Ollivier C.
Renaud P.
J. Am. Chem. Soc.
2000,
122(27):
6496
2c
Ollivier C.
Renaud P.
J. Am. Chem. Soc.
2001,
123(20):
4717
2d
Bertrand F.
Le Guyader F.
Liguori L.
Ouvry G.
Quiclet-Sire B.
Seguin S.
Zard SZ.
C. R. Acad. Sci. Paris, Chimie 4
2001,
547
2e
Quiclet-Sire B.
Seguin S.
Zard SZ.
Angew. Chem. Int. Ed.
1998,
37(20):
2864
2f
Bertrand F.
Quiclet-Sire B.
Zard SZ.
Angew. Chem. Int. Ed.
1999,
38 (13/14):
1943
3
Liard A.
Quiclet-Sire B.
Zard SZ.
Tetrahedron Lett.
1996,
37:
5877
4
Castro EA.
Chem. Rev.
1999,
99:
3505
5a
Boivin J.
Pothier J.
Ramos L.
Zard SZ.
Tetrahedron Lett.
1999,
40:
9239
5b
Typical Procedure: 1 g (4.9 mmol) of xanthate 1a and 1.8 g (9.8 mmol) of olefin 2b dissolved in 6 mL of 1,2-dichloroethane were refluxed for a few minutes under nitrogen before addition of 98 mg (0.24 mmol) of commercially available lauroyl peroxide. The reflux is maintained for another 2 h. The solvent was then removed under reduced pressure and the residue was purified by chromatography on silica gel (PE/EtOAc 9/1-7/3) to give 1.8 g of a white solid (mp 107 °C) 3b (92%). 1H NMR (CDCl3, 200 MHz, ppm): δ = 7.92-7.83 (2 H, m), 7.80-7.70 (2 H, m), 4.30 (2 H, s), 4.29 (1 H, m), 4.03 (1 H, dd, J = 7-14 Hz), 3.97 (1 H, dd, J = 7-14 Hz), 2.74-2.48 (2H, m), 2.28-1.96 (2 H, m), 1.00 (9 H, s). 13C NMR (CDCl3, 50 MHz, ppm): δ = 212.0 (C=S), 168.0 (C=O), 134.4 (CHAr), 131.9 (CqAr), 123.7 (CHAr), 118.7 (CN), 84.0 (CH2O), 48.8 (CHS), 40.4 (CH2), 32.0 (CMe3), 28.3 (CH2), 26.6 (CMe
3), 15.0 (CH2). IR (CCl4, cm-1) 2962, 2250, 1777, 1723, 1392, 1227, 1064. MS (CI): [MH]+ = 391, [MNH4]+ = 408.
6 0.20 g (0.5 mmol) of xanthate 3b and 0.49 g (2.5 mmol) of ethyl 2-bromo-2-methylpropionate dissolved in 7 mL of chlorobenzene were refluxed for a few minutes under nitrogen before addition of 68 mg of commercially available cumyl peroxide. While maintaining the reflux under nitrogen, the same amount of peroxide was added every 2 h until complete disappearence of the starting xanthate. The solvent was removed under reduced pressure and the residue was purified by chromatography on silica gel (PE/EtOAc 9/1-7/3) to give after recrystallisation from ethanol 105 mg of white crystals (mp 120 °C) 5b (70%). 1H NMR (CDCl3, 400 MHz, ppm): δ = 7.90-7.85 (2 H, m), 7.78-7.40 (2 H, m), 4.38 (1 H, m) 4.14 (1 H, dd, J = 7-14 Hz), 3.99 (1 H, dd, J = 7-14 Hz), 2.72 (1 H, ddd, J = 4.5-8-17 Hz), 2.59 (1 H, td, 8-17 Hz), 2.28 (1 H, m), 2.09 (1 H, m). 13C NMR (CDCl3, 100 MHz, ppm): δ = 167.9 (C=O), 134.5 (CHAr), 131.6 (CqAr), 123.8 (CHAr), 118.4 (CN), 49.0 (CHBr), 43.8 (CH2), 31.8 (CH2), 15.9 (CH2). IR (CCl4, cm-1): 2250, 1776, 1724, 1392. MS (CI): [MNH4]+ = 324 and 326.
7a
Murakami N.
Saka M.
Shimada H.
Matsuda H.
Yamahara J.
Yoshikawa M.
Chem. Pharm. Bull.
1996,
44(6):
1279
7b
Jakupovic J.
Castro V.
Bohlmann F.
Phytochemistry
1987,
26(2):
451
7c
Herz W.
Sosa VE.
Phytochemistry
1986,
25(6):
1481
7d
Nagashima F.
Takaoka S.
Asakawa Y.
Huneck S.
Chem. Pharm. Bull.
1994,
42(6):
1370
7e
Götz M.
Bögri A.
Gray AH.
Strunz GM.
Tetrahedron
1968,
24:
2631
7f
Tan RX.
Jia ZJ.
Zhao Y.
Feng SL.
Phytochemistry
1992,
31(9):
3135
7g
Marco JA.
Sanz-Cervera JF.
Pareja JM.
Sancenon F.
Valles-Xirau J.
Phytochemistry
1994,
37(2):
477
8a
Barton DHR.
Csuhai E.
Doller D.
Tetrahedron
1992,
48(42):
9195
8b
Moder TI.
Jensen FR.
J. Am. Chem. Soc.
1975,
97(8):
2281
8c
Benedetti M.
Forti L.
Ghelfi F.
Pagnoni UM.
Ronzoni R.
Tetrahedron
1997,
53(41):
14031
8d See also: Yorimitsu H.
Shinokubo H.
Matsubara S.
Oshima K.
Omoto K.
Fujimoto H.
J. Org. Chem
2001,
66(23):
7776
9
Cristol SJ.
Seapy DG.
J. Org. Chem.
1982,
47(1):
132