References
For recent reviews on parallel solution-phase synthesis using polymer reagents and scavengers, see:
1a
Thomson MA.
Ellman JA.
Chem. Rev.
1996,
96:
555
1b
Kaldor SW.
Siegel MW.
Curr. Opin. Chem. Biol.
1997,
1:
101
1c
Coffen DL.
Tetrahedron
1998,
54:
4085
1d
Booth RJ.
Hodges JC.
J. Am. Chem. Soc.
1997,
119:
4882
1e
Flynn DL.
Crich JZ.
Devraj RV.
Hockerman SL.
Parlow JJ.
South MS.
Woodard SS.
J. Am. Chem. Soc.
1997,
119:
4874
1f
Parlow JJ.
Mischke DA.
Woodard SS.
J. Org. Chem.
1997,
62:
5908
1g
Shuker AJ.
Siegel MG.
Matthews DP.
Wiegel LO.
Tetrahedron Lett.
1997,
38:
6149
1h
Parlow JJ.
Devraj RV.
South MS.
Curr. Opin. Chem. Biol.
1999,
3:
320
1i
Flynn DL.
Med. Res. Rev.
1999,
19:
408
1j
Brummer O.
Clapham B.
Janda KD.
Curr. Opion. Drug Discovery Dev.
2000,
3:
462
1k
Shuttleworth SJ.
Allin SM.
Wilson RD.
Nasturica D.
Synthesis
2000,
1035
1l
Bhalay G.
Dunstan A.
Glen A.
Synlett
2000,
1846
1m
de Miguel YR.
J. Chem. Soc., Perkin Trans 1
2000,
4213
1n
Bhattacharyya S.
Comb. Chem. High Throughput Screening
2000,
3:
65
1o
Ley SV.
Baxendale IR.
Bream RN.
Jackson PS.
Leach AG.
Longbottom DA.
Nesi M.
Scott JS.
Storer RI.
Taylor SJ.
J. Chem. Soc., Perkin Trans 1
2000,
3815
1p
Kirschning A.
Monenschein H.
Wittenberg R.
Angew. Chem. Int. Ed.
2001,
40:
650
2 Yun, Y. K.; Porco, Jr., J. A. Synthesis of Substituted Benzimidazoles using Parallel Hydrogenation, Argonaut Technologies, Application Note APN 025.
For recent publications on the solid-phase synthesis of benzimidazoles, see:
3a
Scarborough RM.
Huang W.
Tetrahedron Lett.
1999,
40:
2665
3b
Pan P.
Sun C.
Bioorg. Med. Chem. Lett.
1999,
9:
1537
3c
Tumelty D.
Schearz M.
Needels MC.
Tetrahedron Lett.
1998,
39:
7467
3d
Mayer JP.
Lewis GS.
McGee C.
Bankaitis-Davis D.
Tetrahedron Lett.
1998,
39:
6655
3e
Wei GP.
Phillips GB.
Tetrahedron Lett.
1998,
39:
179
3f
Lee J.
Gauthier D.
Rivero RA.
Tetrahedron Lett.
1998,
39:
201
3g
Phillips GB.
Wei GP.
Tetrahedron Lett.
1996,
37:
4887
4a
White AW.
Almassy R.
Calvert AH.
Curtin NJ.
Griffin RJ.
Hostomsky Z.
Maegley K.
Newell DR.
Srinivasan S.
Golding BT.
J. Med. Chem.
2000,
43:
4084
4b
Chua M.
Shi D.
Wrigley S.
Bradshaw TD.
Hutchinson I.
Shaw PN.
Barrett D.
Stanley LA.
Stevens MFG.
J. Med. Chem.
1999,
42:
381
4c
Palmer B.
Smaill J.
Boyd M.
Boschelli D.
J. Med. Chem.
1998,
41:
5457
4d
Orjales A.
Mosquera R.
Labeaga L.
Rodes R.
J. Med. Chem.
1997,
40:
586
4e
Terauchi H.
Tanitame A.
Nakamura K.
Seto Y.
Nishikawa Y.
J. Med. Chem.
1997,
40:
313
4f
Zarrinmayeh H.
Zimmerman DM.
Cantrell BE.
Schober DA.
Bruns RF.
Gackenheimer SL.
Ornstein PL.
Hipskind PA.
Britton TC.
Gehlert DR.
Bioorg. Med. Chem. Lett.
1999,
9:
647
5a
Zhang L.
Wats WM.
Costello TD.
Ma P.
Ensinger CL.
Rodgers JM.
Jacobson IC.
Rajagopalan P.
Tetrahedron Lett.
1995,
36:
8387
5b
Lee J.
Murray WV.
Rivero RA.
J. Org. Chem.
1997,
62:
3874
5c
Mazurov A.
Tetrahedron Lett.
2000,
41:
7
5d
Arumugam V.
Routledge A.
Abell C.
Balasubramanian S.
Tetrahedron Lett.
1997,
38:
6473
5e
Kiselyov A.
Armstrong RW.
Tetrahedron Lett.
1997,
38:
6163
5f
Rylander P.
Hydrogenation Methods
Academic Press;
San Diego CA:
1985.
p.104-116
6a
Veale CA.
Steelman GB.
Chow MM.
J. Org. Chem.
1993,
58:
4490
6b
Batti R.
Gouverneur V.
Mioskowski C.
Synthesis
1999,
927
7a
Eynde JJV.
Delfosse F.
Lor P.
Haverbeke YV.
Tetrahedron
1995,
51:
5813
7b
Thomas JB.
Fall MJ.
Cooper JB.
Burgess JP.
Carroll FI.
Tetrahedron Lett.
1997,
38:
5099
7c
Moore AG.
Schow SR.
Lum RT.
Nelson MG.
Melville CR.
Synthesis
1999,
1123
Representative procedure for amide coupling using PS-carbodiimide and PS-Trisamine:
8a Method A: PS-Carbodiimide resin (2.0 equiv) was added to a dry reaction vessel. The acid (1.5 equiv) in CH2Cl2 (with 10% DMF added if required) was added to the dry resin and the mixture stirred at room temperature. After 5 min., amine (1.0 equiv) in CH2Cl2 was added and the reaction stirred at room temperature for 12 h to afford the amide product. Typical reaction solvent volumes are 10 mL/g resin.
8b Method B: Amine (1.0 equiv) and acid (1.5 equiv) in CH2Cl2 (with 10% DMF added if necessary) were added to a dry reaction vessel and the mixture stirred for 10 min prior to addition of PS-Carbodiimide resin (2 equiv) with a reaction solvent volume of 10 mL/g resin. The reaction was then stirred overnight.
8c Method C: PS-Carbodiimide (2.0 equiv), acid (1.5 equiv) and HOAt (1.7 equiv) were dissolved in CH2Cl2 and added to a dry reaction vessel and stirred for 5-10 min prior to addition of amine (1.0 equiv). The reaction was stirred at room temperature overnight. After the reaction, the HOAt was scavenged using PS-Trisamine resin (5 equiv) for 2 hours at room temperature prior to filtration.
8d General Procedure for Reaction Work-up: The reaction mixture was filtered and the amide product was collected in the filtrate. The resin was further washed an additional two times with the reaction solvent (CH2Cl2 or CH2Cl2-DMF as needed for solubility). A sample from the combined fractions was generally analyzed by GC before concentration to evaluate product purity and presence (if any) of unreacted amine. Concentration afforded the amide product.
9a
Weidner JJ.
Parlow JJ.
Flynn DL.
Tetrahedron Lett.
1999,
40:
239
9b
Nicewonger RB.
Ditto L.
Varady L.
Tetrahedron Lett.
2000,
41:
2323
10a
Nestor JJ.
Horner BL.
Ho TL.
Jones GH.
McRae GI.
Vickery BH.
J. Med. Chem.
1984,
27:
320
10b
Ogatta M.
Yoshimura T.
Fijji H.
Ito Y.
Katsuki T.
Synlett
1993,
728
10c
Clarborne CF.
Liverton NJ.
Tetrahedron Lett.
1998,
39:
8939
11 Representative spectroscopic data for compounds 2-4, 6, and 7.2d: 1H NMR (CDCl3, 300 MHz): δ 9.96 (bs, 1 H, NH), 8.50 (dd, J = 8.1 Hz, 1.5 Hz, 1 H, CH), 8.43 (dd, J = 4.8 Hz, 1.8 Hz, 1 H, CH), 7.48 (d, J = 9.3 Hz, 2 H, CH), 6.93 (d, J = 9.0 Hz, 2 H, CH), 6.77 (dd, J = 8.7 Hz, 4.8 Hz, 1 H, CH), 3.82 (s, 3 H, CH3); 13C NMR (CDCl3, 75 MHz): δ 157.12, 155.45, 150.81, 135.46, 130.61, 128.30, 124.78, 114.26, 113.34, 55.48 ppm.
3d: 1H NMR (d6-DMSO, 300 MHz): δ 7.95 (bs, 1 H, NH), 7.49 (d, J = 9.0 Hz, 2 H, CH), 7.36 (dd, J = 4.8 Hz, 1.2 Hz, 1 H, CH), 6.90 (dd, J = 7.5 Hz, 1.2 Hz, 1 H, CH), 6.86 (d, J = 9.0 Hz, 1 H, CH), 6.58 (dd, J = 7.8 Hz, 5.4 Hz, 1 H, CH), 5.60 (bs, 2 H, NH2), 3.71 (s, 3 H, CH3); 13C NMR (d6-DMSO, 75 MHz): δ 154.46, 144.13, 134.11, 132.20, 131.94, 121.61, 119.56, 114.89, 114.11, 55.34 ppm.
4d: 1H NMR (CDCl3, 300 MHz): δ 8.44 (d, J = 4.8 Hz, 1 H, CH), 8.25 (s, 1 H, CH), 8.13 (d, J = 7.8 Hz, 1 H, CH), 7.60 (d, J = 8.7 Hz, 2 H, CH), 7.30 (dd, J = 8.1 Hz, 4.8 Hz, 1 H, CH), 7.08 (d, 2 H, CH), 3.85 (s, 3 H, CH3); 13C NMR (CDCl3, 75 MHz): δ 159.30, 147.12, 144.90, 143.29, 135.71, 128.23, 128.01, 125.37, 118.71, 115.01, 55.61 ppm.
6i: 1H NMR (CDCl3, 300 MHz): δ 9.17 (s, 1 H, CH), 7.98 (d, J = 8.4 Hz, 2H, CH), 7.71 (dd, J = 8.7, 2.1 Hz, 2 H, CH), 7.55 (s, 1 H, CH), 7.43 (d, J = 8.7 Hz, 1 H, CH), 6.86 (d, J = 8.7 Hz, 1 H, CH), 5.41 (s, 1 H, CH), 3.23 (t, J = 6.9 Hz, 2 H, CH2), 1.61 (tt, J = 7.5, 7.5 Hz, 2 H, CH2), 1.43 (tq, J = 8.1, 7.2 Hz, 2 H, CH2), 0.91 (t, J = 7.5 Hz, 3 H, CH3) ppm.
7i: 1H NMR (CDCl3, 300 MHz): δ 7.97 (s, 1 H, CH), 7.82 (d, J = 8.4 Hz, 1 H, CH), 7.72 (d, J = 8.4 Hz, 2 H, CH), 7.67 (d, J = 8.7 Hz, 2 H, CH), 7.54 (d, J = 8.1 Hz, 1 H, CH), 4.27 (t, J = 7.2 Hz, 2 H, CH2), 1.55 (tt, J = 7.5, 7.5 Hz, 2 H, CH2), 1.05 (tq, J = 7.8, 7.2 Hz, 2 H, CH2), 0.66 (t, J = 7.5 Hz, 3 H, CH3); 13C NMR (CDCl3, 75 MHz): δ 154.27, 141.92, 137.99, 131.89, 131.22, 129.13, 123.83, 119.17, 116.62, 44.18, 31.14, 19.14, 13.23 ppm.
12 Yun, Y. K.; Vo, L.; Porco, Jr., J. A.; Labadie, J. 219th ACS National Meeting, 2000, ORGN 1.