Zusammenfassung
Ziel: Weder die Spontanheilung noch die
derzeit klinisch angewandten operativen Behandlungskonzepte führen bei
Knorpelschäden in tragenden Gelenkabschnitten zu einem befriedigenden
Heilungsergebnis mit einem dauerhaft belastbaren hyalinem Knorpelregenerat.
Methode: Eine der aussichtsreichsten neuen Techniken zur
Ergänzung und Modifikation bestehender Behandlungsmethoden bei
Gelenkknorpelläsionen stellt die Gentherapie dar. Autogene Zellen
synthetisieren und exprimieren über längere Zeit nach Einschleusen
entsprechender Gensegmente vermehrt Wachstumsfaktoren, so dass eine
gewebetypische Differenzierung induziert werden kann. Ergebnisse: Die am längsten anhaltende Expression von
transferierten Genen, nämlich bis zu einem Jahr nach der Injektion, wurde
bisher in Nucleus Pulposus Zellen von Zwischenwirbelscheiben beobachtet. Neuere
Untersuchungen zeigen, dass nicht nur Knorpelzellen sondern auch aus
Skelettmuskulatur isolierte Zellen in der Lage sind therapeutische Gene zur
Knorpelregeneration aufzunehmen und spezifische Faktoren zu exprimieren.
Pluripotente mesenchymale Stammzellen aus Skelettmuskulatur isoliert und ex
vivo vermehrt können unter dem Einfluss von Faktoren zu hyalinem Knorpel
differenzieren und Knorpeldefekte in Kombination mit biokompatiblen
Trägermaterialien auffüllen. Schlussfolgerung:
Die klinische Anwendung dieser erfolgversprechenden Techniken ist in der
nächsten Dekade zu erwarten. Es wird daher der derzeitige Stand des
Gentransfers und die Ansätze zur Fortentwicklung mit den Auswirkungen auf
die rekonstruktive Gelenkchirurgie dargestellt.
Abstract
Aim: Articular cartilage has very limited
intrinsic healing capacity. Although numerous attempts to repair full-thickness
articular cartilage defects have been conducted, no methods have successfully
regenerated long-lasting hyaline cartilage. One of the most promising
procedures for cartilage repair is tissue engineering accompanied by gene
therapy. Method: With gene therapy, genes encoding for
therapeutic growth factors can be expressed at a high level in the injured site
for an extended period of time. Chondrocytes have been intensively studied for
cell transplantation in articular cartilage defects. Results: However, recent studies have shown that
chondrocytes are not the only candidate for cartilage repair. Muscle-derived
cells have been found capable of delivering genes and represent a good vehicle
to deliver therapeutic genes to improve cartilage repair. More importantly,
recent studies have suggested the presence of pluripotent stem cells in
muscle-derived cells. Conclusion: New techniques of cell
therapy and molecular medicine for the treatment of cartilage lesions are
currently undergoing clinical trials. This paper will summarize the current
status of gene therapy for cartilage repair and its future application.
Schlüsselwörter
Gentherapie - Knorpel - Arthrose - Stammzellen
Key words
Gene therapy - Cartilage - Arthritis - Stem cells - Muscle-derived cells
Literatur
-
1
Jackson D W, Halbrecht J, Proctor C, Van Sickle D, Simon T M.
Assessment of donor cell and matrix survival in fresh
articular cartilage allografts in a goat model.
J Orthop Res.
1996;
14:
255-264
-
2
Altman R D, Kates J, Chun L E, Dean D D, Eyre D.
Preliminary observations of chondral abrasion in a canine
model.
Ann Rheum Dis.
1992;
51:
1056-1062
-
3
Friedman M J, Berasi C C, Fox J M, Del Pizzo W, Snyder S J, Ferkel R D.
Preliminary results with abrasion arthroplasty in the
osteoarthritic knee.
Clin Orthop.
1984;
200-205
-
4
Bentley G, Greer R B.
Homotransplantation of isolated epiphyseal and articular
cartilage chondrocytes into joint surfaces of rabbits.
Nature.
1971;
230:
385-388
-
5
Ficat R P, Ficat C, Gedeon P, Toussaint J B.
Spongialization: a new treatment for diseased patellae.
Clin Orthop.
1979;
74-83
-
6
Breinan H A, Minas T, Hsu H P, Nehrer S, Sledge C B, Spector M.
Effect of cultured autologous chondrocytes on repair of
chondral defects in a canine model.
J Bone Joint Surg Am.
1997;
79:
1439-1451
-
7
Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L.
Treatment of deep cartilage defects in the knee with
autologous chondrocyte Transplantation [see comments].
N Engl J Med.
1994;
331:
889-895
-
8
Brittberg M, Nilsson A, Lindahl A, Ohlsson C, Peterson L.
Rabbit articular cartilage defects treated with autologous
cultured chondrocytes.
Clin Orthop.
1996;
270-283
-
9
Grande D A, Pitman M I, Peterson L, Menche D, Klein M.
The repair of experimentally produced defects in rabbit
articular cartilage by autologous chondrocyte Transplantation.
J Orthop Res.
1989;
7:
208-218
-
10
Mont M A, Jones L C, Vogelstein B N, Hungerford D S.
Evidence of Inappropriate Application of Autologous Cartilage
Transplantation Therapy in an Uncontrolled Environment [(GENERIC) Ref
Type: Magazine Article].
Am J Sports Med.
1999;
27 (5):
617-620
-
11
Horas U, Schnettler R, Pelinkovic D, Herr G, Aigner T.
Knorpelknochentransplantation versus autologer
Knorpeltransplantation.
Chirurg.
2000;
71:
1090-1097
-
12
O’Driscoll S W, Keeley F W, Salter R B.
The chondrogenic potential of free autogenous periosteal
grafts for biological resurfacing of major full-thickness defects in joint
surfaces under the influence of continuous passive motion. An experimental
investigation in the rabbit.
J Bone Joint Surg Am.
1986;
68:
1017-1035
-
13
Delaney J P, O’Driscoll S W, Salter R B.
Neochondrogenesis in free intraarticular periosteal
autografts in an immobilized and paralyzed limb. An experimental investigation
in the rabbit.
Clin Orthop.
1989;
278-282
-
14
Homminga G N, Bulstra S K, Kuijer R, van der Linden A J.
Repair of sheep articular cartilage defects with a rabbit
costal perichondrial graft.
Acta Orthop Scand.
1991;
62:
415-418
-
15
Chu C R, Convery F R, Akeson W H, Meyers M, Amiel D.
Articular cartilage Transplantation. Clinical results in the
knee.
Clin Orthop.
1999;
159-168
-
16
Garrett J C.
Fresh osteochondral allografts for treatment of articular
defects in osteochondritis dissecans of the lateral femoral condyle in
adults.
Clin Orthop.
1994;
33-37
-
17
Ghazavi M T, Pritzker K P, Davis A M, Gross A E.
Fresh osteochondral allografts for post-traumatic
osteochondral defects of the knee.
J Bone Joint Surg Br.
1997;
79:
1008-1013
-
18
Meyers M H, Akeson W, Convery F R.
Resurfacing the knee with fresh osteochondral allograft.
J Bone Joint Surg Am.
1989;
71-A:
704-713
-
19
Morales T I, Roberts A B.
Transforming growth factor beta regulates the metabolism of
proteoglycans in bovine cartilage organ cultures.
J Biol Chem.
1988;
263:
12 828-12 831
-
20
Redini F, Galera P, Mauviel A, Loyau G, Pujol J P.
Transforming growth factor beta stimulates collagen and
glycosaminoglycan biosynthesis in cultured rabbit articular chondrocytes.
FEBS Lett.
1988;
234:
172-176
-
21
Humbel R E.
Insulin-like growth factors I and II.
Eur J Biochem.
1990;
190:
445-462
-
22
Tyler J A.
Insulin-like growth factor I can decrease degradation and
promote synthesis of proteoglycan in cartilage exposed to cytokines.
Biochem J.
1989;
260:
543-548
-
23
Pelletier J P, Caron J P, Evans C, Robbins P D, Georgescu H I, Jovanovic D, Fernandes J C, Martel-Pelletier J.
In vivo suppression of early experimental osteoarthritis by
interleukin-1 receptor antagonist using gene therapy.
Am J Pathol.
1997;
40:
1012-1019
-
24
van Beuningen H M, van der Kraan P M, Arntz O J, van den Berg W B.
Transforming growth factor-beta 1 stimulates articular
chondrocyte proteoglycan synthesis and induces osteophyte formation in the
murine knee joint.
Lab Invest.
1994;
71:
279-290
-
25
Allen J B, Manthey C L, Hand A R, Ohura K, Ellingsworth L, Wahl S M.
Rapid onset synovial inflammation and hyperplasia induced by
transforming growth factor beta.
J Exp Med.
1990;
171:
231-247
-
26
Nita I, Ghivizzani S C, Galea-Lauri J, Bandara G, Georgescu H I, Robbins P D, Evans C H.
Direct gene delivery to synovium. An evaluation of potential
vectors in vitro and in vivo.
Arthritis Rheum.
1996;
39:
820-828
-
27
Evans C H, Robbins P D.
Possible orthopaedic applications of gene therapy.
J Bone Joint Surg Am.
1995;
77:
1103-1114
-
28
Felgner P L, Gadek T R, Holm M, Roman R, Chan H W, Wenz M, Northrop J P, Ringold G M, Danielsen M.
Lipofection: a highly effizient, lipid-mediated
DNA-transfection procedure.
Proc Natl Acad Sci USA.
1987;
84:
7413-7417
-
29
Madry H, Trippel S B.
Efficient lipid-mediated gene transfer to articular
chondrocytes.
Gene Ther.
2000;
7:
286-291
-
30
Yang N S, Burkholder J, Roberts B, Martinell B, McCabe D.
In vivo and in vitro gene transfer to mammalian somatic cells
by particle bombardment.
Proc Natl Acad Sci USA.
1990;
87:
9568-9572
-
31
Tomita T, Hashimoto H, Tomita N, Morishita R, Lee S B, Hayashida K, Nakamura N, Yonenobu K, Kaneda Y, Ochi T.
In vivo direct gene transfer into articular cartilage by
intraarticular injection mediated by HVJ (Sendai virus) and liposomes.
Arthritis Rheum.
1997;
40:
901-906
-
32
lkeda T, Kubo T, Nakanishi T, Arai Y, Kobayashi K, Mazda O, Ohashi S, Takahashi K, lmanishi J, Takigawa M, Hirasawa Y.
Ex vivo gene delivery using an adenovirus vector in treatment
for cartilage defects.
J Rheumatol.
2000;
28:
330-336
-
33
Kang R, Marui T, Ghivizzani S C, Nita I M, Georgescu H I, Suh J K, Robbins P D, Evans C H.
Ex vivo gene transfer to chondrocytes in full-thickness
articular cartilage defects: a feasibility study.
Osteoarthritis Cartilage.
1997;
5:
139-143
-
34
Baragi V M, Renkiewicz R R, Jordan H, Bonadio J, Hartman J W, Roessler B J.
Transplantation of transduced chondrocytes protects articular
cartilage from interleukin 1-induced extracellular matrix degradation.
J Clin lnvest.
1995;
96:
2454-2460
-
35
Lee J Y, Hall R, Pelinkovic D, Cassinelli Z, Usas A, Gilbertson L, Huard J, Kang J.
New Use of a Three-Dimensional Pellet Culture System for
Human Intervertebral Disc Cells: lnitial Characterization and Potential Use for
Tissue Engineering.
Spine.
2001;
26:
2316-2322
-
36
Moon S H, Gilbertson L G, Nishida K, Knaub M, Muzzonigro T, Robbins P D, Evans C H, Kang J D.
Human intervertebral disc cells are genetically modifiable by
adenovirus-mediated gene transfer: implications for the clinical management of
intervertebral disc disorders.
Spine.
2000;
10 (Oct. 15, 25):
2573-2579
-
37
Nishida K, Gilbertson L G, Robbins P D, Evans C H, Kang J D.
Potential applications of gene therapy to the treatment of
intervertebral disc disorders.
Clin Orthop.
2000;
10 (379 Suppl.):
234-241
-
38
Reinecke J A, Wehling P, Robbins P, Evans C H, Sager M, Schulze-Allen G, Koch H.
[In vitro transfer of genes in spinal tissue] In
vitro Transfer von Genen in spinale Gewebe.
Z Orthop Ihre Grenzgeb.
1997;
135:
412-416
-
39
Evans C H, Robbins P D, Ghivizzani S C, Herndon J H, Kang R, Bahnson A B, Barranger J A, Elders E M, Gay S, Tomaino M M, Wasko M C, Watkins S C, Whiteside T L, Glorioso J C, Lotze M T, Wright T M.
Clinical trial to assess the safety, feasibility, and
efficacy of transferring a potentially anti-arthritic cytokine gene to human
joints with rheumatoid arthritis.
Hum Gene Ther.
1996;
7:
1261-1280
-
40
Whalen J D, Lechman E L, Carlos C A, Weiss K, Kovesdi I, Glorioso J C, Robbins P D, Evans C H.
Adenoviral transfer of the viral IL-10 gene periarticularly
to mouse paws suppresses development of collagen-induced arthritis in both
injected and uninjected paws.
J Immunol.
1999;
162:
3625-3632
-
41
Smith P, Shuler F D, Georgescu H I, Ghivizzani S C, Johnstone B, Niyibizi C, Robbins P D, Evans C H.
Genetic enhancement of matrix synthesis by articular
chondrocytes: comparison of different growth factor genes in the presence and
absence of interleukin-1.
Arthritis Rheum.
2000;
43:
1156-1164
-
42
Pan R Y, Chen S L, Xiao X, Liu D W, Peng H J, Tsao Y P.
Therapy and prevention of arthritis by recombinant
adeno-associated virus vector with delivery of interleukin-1 receptor
antagonist.
Arthritis Rheum.
2000;
43:
289-297
-
43
Arai Y, Kubo T, Fushiki S, Mazda O, Nakai H, lwaki Y, lmanishi J, Hirasawa Y.
Gene delivery to human chondrocytes by an adeno associated
virus vector.
J Rheumatol.
2000;
27:
979-982
-
44
Eming S A, Morgan J R, Berger A.
Genetherapy for tissue repair: approaches and prospects.
Br J Plast Surg.
1997;
50:
491-500
-
45
Adachi N, Pelinkovic D, Lee C W, Fu F H, Huard J.
Gene Therapy and Future of Cartilage Repair.
Operative Techniques in Orthopaedics.
2001;
351-358
-
46
Pridie K H.
A Method of Resurfacing Osteoarthritic Knee Joints.
J Bone Joint Surg Br.
1959;
41:
618-619
-
47
Pelinkovic D, Lee J Y, Adachi N, Fu F H, Huard J.
Muscle-based gene therapy and tissue engineering. Crit.
Rev Eukaryot Gene Expr.
2001;
11 (1.-3.):
121-129
-
48
Bosch P, Musgrave D, Shuler F, Ghivizzani S, Evans C, Robbins P, Huard J.
Osteoprogenitor cells in skeletal muscle.
J Orthop Res.
2000;
18:
933-944
-
49
Huard J, Bouchard J P, Roy R, Malouin F, Dansereau G, Labrecque C, Albert N, Richards C L, Lemieux B, Tremblay J P.
Human myoblast Transplantation: preliminary results of 4
cases.
Muscle Nerve.
1992;
15:
550-560
-
50
Kasemkijwattana C, Menetrey J, Somogyl G, Moreland M S, Fu F H, Buranapanitkit B, Watkins S C, Huard J.
Development of approaches to improve the healing following
muscle contusion.
Cell Transplant.
1998;
7:
585-598
-
51
Qu Z, Balkir L, van Deutekom J C, Robbins P D, Pruchnic R, Huard J.
Development of approaches to improve cell survival in
myoblast transfer therapy.
J Cell Biol.
1998;
142:
1257-1267
-
52
Day C S, Kasemkijwattana C, Menetrey J, Floyd S SJ, Booth D, Moreland M S, Fu F H, Huard J.
Myoblast-mediated gene transfer to the joint.
J Orthop Res.
1997;
15:
894-903
-
53
Pelinkovic D, Martinek V, Engelhardt M, Lee J Y, Fu F, Huard J.
[Tissue Engineering and Gene Therapy of the
Musculoskeletal System with Muscle Derived Cells] Tissue Engineering und
Gentherapie des Bewegungsapparates mit Muskelzellen.
Z Orthop Ihre Grenzgeb.
200;
9 (138):
402-406
-
54
Lee J Y, Qu-Petersen Z, Cao B, Kimura S, Jankowski R, Cummins J, Usas A, Gates C, Robbins P, Wernig A, Huard J.
Clonal Isolation of Muscle-derived Cells Capable of Enhancing
Muscle Regeneration and Bone Healing.
J Cell Biol.
2000;
150:
1085-1100
-
55
Gussoni E, Blau H M, Kunkel L M.
The fate of individual myoblasts after Transplantation into
muscles of DMD patients.
Nat Med.
1997;
3:
970-977
-
56
Webster C, Pavlath G K, Parks D R, Walsh F S, Blau H M.
Isolation of human myoblasts with the fluorescence-activated
cell sorter.
Exp Cell Res.
1988;
174:
252-265
-
57
Rando T A, Blau H M.
Primary mouse myoblast purification, characterization, and
transplantation for cell-mediated gene therapy.
J Cell Biol.
1994;
125:
1275-1287
Dr. med. Dalip Pelinkovic
Orthopädische Universitätsklinik Frankfurt a. M.
Stiftung Friedrichsheim (Direktor: Prof. Dr. L. Zichner)
Marienburg Strasse 5-8
60528 Frankfurt am Main
eMail: peli99@hotmail.com