References and Notes
1a
Boger DL.
Weinreb SN.
Hetero Diels-Alder Methodology in Organic Synthesis
Academic Press;
San Diego:
1987.
1b
Tietze LF.
Kettschau G.
Top. Curr. Chem.
1997,
189:
1
For reviews, see:
2a
Rappoport Z.
The Chemistry of Enamines in The Chemistry of Functional Groups
John Wiley and Sons;
New York:
1994.
2b
Whitesell JK.
Whitesell MA.
Synthesis
1983,
517
2c
Hickmott PW.
Tetrahedron
1982,
38:
1975
2d
Hickmott PW.
Tetrahedron
1982,
38:
3363
2e
Lenz GR.
Synthesis
1978,
489
2f For reviews on cycloaddition using dienamides, see: Campbell AL.
Lenz GR.
Synthesis
1987,
421
For recent studies involving enamides, see:
3a
Fuchs JR.
Funk RL.
Org. Lett.
2001,
3:
3349
3b
Maeng J.-H.
Funk RL.
Org. Lett.
2001,
3:
1125
3c
Abbiati G.
Clerici F.
Gelmi ML.
Gambini A.
Pilati T.
J. Org. Chem.
2001,
66:
6299
3d
Bach T.
Schröder J.
Brandl T.
Hecht J.
Harms K.
Tetrahedron
1998,
54:
4507
For recent examples of synthesis and cycloadditions of dienamides, see:
4a
Gauvry N.
Huet F.
J. Org. Chem.
2001,
66:
583
4b
von Wangelin AJ.
Neumann H.
Gordes D.
Spannenberg A.
Beller M.
Org. Lett.
2001,
3:
2895
4c
Ha JD.
Kang CH.
Belmore KA.
Cha JK.
J. Org. Chem.
1998,
63:
3810 ; and references 1-7 cited therein.
4d For epoxydation of enamides, see: Adam W.
Reinhardt D.
Reissig H.-U.
Paulini K.
Tetrahedron
1995,
51:
12257 ; and references cited therein
4e Also see: Koseki Y.
Kusano S.
Ichi D.
Yoshida K.
Nagasaka T.
Tetrahedron
2000,
56:
8855
The first examples of inverse-electron demand [4+2] heterocycloadditions of allenamides and allenimides (including chiral ones) were recently described:
5a
Wei L.-L.
Xiong H.
Douglas CJ.
Hsung RP.
Tetrahedron Lett.
1999,
40:
6903
5b
Wei L.-L.
Hsung RP.
Xiong H.
Mulder JA.
Nkansah NT.
Org. Lett.
1999,
1:
2145
6
Vani PV.
Chida AS.
Srinivasan R.
Chandrasekharam M.
Singh AK.
Synth. Commun.
2001,
31:
2043
7 Walles WE, Tousignant WF, and Houtman T. inventors; US Patent Appl. 2891058.
8
Tulshian DB.
Tsang R.
Fraser-Reid B.
J. Org. Chem.
1984,
49:
2347
9
Dujardin G.
Rossignol S.
Brown E.
Tetrahedron Lett.
1995,
36:
1653
10
Akiba T.
Tamura O.
Hashimoto M.
Kobayashi Y.
Katoh T.
Nakatani K.
Kamada M.
Hayakawa I.
Terashima S.
Tetrahedron
1994,
50:
3905
11
Gassman PG.
Burns SJ.
Pfister KB.
J. Org. Chem.
1993,
58:
1449
12
Bach T.
Brummerhop H.
J. Prakt. Chem.
1999,
341:
410
13
Preparation of N-vinyl-2-oxazolidinone 1: A mixture of oxazolidinone (2.05 g, 23.4 mmol), acetaldehyde diethyl acetal (33 mL, 0.23 mol) and d,l-camphorsulfonic acid (0.27 g, 1.17 mmol) was heated for 15 h at 55 °C. After cooling, aq. NaHCO3 (15 mL) was added and the reaction mixture extracted with Et2O (3 × 8 mL). The organic layer was washed with brine and dried over MgSO4. Removal of solvent yielded crude N,O-acetal 2 (3.72 g, quantitative) used without further purification. To a cooled solution (0 °C) of crude N,O-acetal 2 (3.72 g, 23.4 mmol) in anhydrous CH2Cl2 under nitrogen (22 mL) were dropwise added distilled NEt3 (4.9 mL, 37.7 mmol) and, trimethylsilyl triflate (5.5 mL, 30.4 mmol). After slow return to r.t. and stirring for 16 h, the mixture was filtered on basic alumina. Removal of solvent and purification by filtration (silica gel 4/1; ether) yielded 1 (1.95 g, 73%) as a pale yellow oil;Rf = 0.37 (Cyclohexane-AcOEt, 1:1); IR(film): 1753 (C=O), 1633 (C=C), 1248, 1080 (C-O) cm-1; 1H NMR (400 MHz, CDCl3), δ 3.72 (t, 2 H, J
4
′
-5
′ = 8.2 Hz, H-4′), 4.30 (dd, 1 H, J
2B-1 = 15.8 Hz, J
AB = 1.0 Hz, H-2B), 4.44 (dd, 1 H, J
2A-1 = 8.9 Hz, J
AB = 1.0 Hz, H-2A), 4.47 (t, 2 H, J
5
′
-4
′ = 8.2 Hz, H-5′), 6.89 (dd, 1 H, J
1-2B = 15.8 Hz, J
1-2A = 8.9 Hz, H-1); 13C NMR(100 MHz, CDCl3), δ 41.7 (C-4′), 62.0 (C-5′), 93.3 (C-2), 129.7 (C-1), 155.2 (C-2′).
14
General preparation of hetero-adduct 4a-f with Eu(fod)
3
: A solution of heterodiene 3 (0.5 mmol), N-vinyl-2-oxazol-idinone 1 (0.5 mmol) and Eu(fod)3 (0.025 mmol) in cyclo-hexane (5 mL) was refluxed under nitrogen for the time referred to Table
[2]
. After removal of solvent the crude product was chromatographed (silica gel 40/1) using cyclohexane-AcOEt, 70:30 to 50:50. Compounds 4a-f obtained with yields referred to Table
[2]
are new and analytical data of one representative example is included in ref. 15.
15
Analytical data of hetero-adduct 4a cis: white crystal, mp 59-61 °C(ether); Rf = 0.23 (cyclohexane-AcOEt, 1:1); 1H NMR (400 MHz, CDCl3), δ 1.94 (dt, 1 H, J
AB = 12.8 Hz,
J
2ax-3 = J
2ax-1 = 11.3 Hz, H-2ax), 2.26 (ddt, 1 H, J
AB = 12.8 Hz, J
2eq-3 = 6.4 Hz, J
2eq-1 = J
2eq-4 = 2 Hz, H-2eq), 3.57 (dt, 1 H, JAB = J
4
′
B-5
′
B = 8.9 Hz, J
4
′
B-5
′
A = 6.2 Hz, H-4′B), 3.81 (s, 3 H, OCH3), 3.84 (m, 1 H, H-4′A), 3.89 (ddd, 1 H, J
3-2ax = 11.3 Hz, J
3-2eq = 6.4 Hz, J
3-4 = 2.5 Hz, H-3), 4.38 (dt, 1 H, J
AB = J
5
′
B-4
′
B = 8.9 Hz, J
5
′
B-4
′
A = 6.9 Hz, H-5′B), 4.46 (dt, 1 H, JAB = J
5
′
A-4
′
A = 8.9 Hz, J
5
′
A-4
′
B = 6.2 Hz, H-5′A), 5.76 (dd, 1 H, J
1-2ax = 11.3 Hz, J
1-2eq = 2 Hz, H-1), 6.17 (t, 1 H, J
4-3 = J
4-2eq = 2 Hz, H-4), 7.22 (d, 2 H, J = 6.9 Hz, H
o
), 7.29 (t, 1 H, J = 7.4 Hz, H
p
), 7.35 (t, 2 H, J = 7.4 Hz, H
m
); 13C NMR (100 MHz, CDCl3), δ 35.5 (C-2), 39.5 (C-3), 40.1 (C-4′), 52.7 (OCH3), 62.9 (C-5′), 81.3 (C-1), 114.6 (C-4), 127.5 (C
o
), 127.7 (C
p
), 129.3 (C
m
), 142.5 (C
n
), 144.4 (C-5), 157.8 (C-2′), 163.0 (CO2). IR(film): 1758 (C=O), 1643 (C=C), 1134, 1248, 1288 (C-O) cm-1; SM C16H17NO5 [M]+· 303 (1.8%); HRMS (EI) calcd for C16H15NO4 [M-H2O]+ 285.1001, found 285.1008.
16
Preparation of hetero-adduct 4a trans with SnCl
4
: To a cooled solution (-78 °C) of heterodiene 3a (95 mg, 0.5 mmol) and N-vinyl-2-oxazolidinone 1 (57 mg, 0.5 mmol) in anhydrous CH2Cl2 (5 mL) under nitrogen was added dropwise SnCl4 1 M in CH2Cl2 (0.25 mL, 0.25 mmol). After stirring (5 min) the mixture was quenched with sat. aq. NaHCO3 (5 mL). After returning to r.t. and extraction with CH2Cl2 (2 × 5 mL), the resulting organic layer was dried (MgSO4). Removal of solvent and purification by chromatography (silica gel 40/1; cyclohexane-AcOEt, 70:30 to 50:50) yielded 4a (143 mg, 94%) as a mixture cis/trans, 68:32. 4a trans was thus isolated as a white solid; Rf = 0.16 (cyclohexane-AcOEt, 1:1); 1H NMR (400 MHz, CDCl3), δ 2.03 (dq, 1 H, J
AB = 13.3 Hz, J2eq-1 = J2eq-3 =
J
2eq-4 = 2 Hz, H-2eq), 2.33 (ddd, 1 H, J
AB = 13.3 Hz, J
2ax-1 = 11.3 Hz, J
2ax-3 = 6.6 Hz, H-2ax), 3.61 (dt, 1 H, J
AB = J
4
′
B-5
′
B = 8.6 Hz, J
4
′
B-5
′
A = 5.9 Hz, H-4′B), 3.81 (m, 2 H, H-3 + H-4′A), 3.83 (s, 3 H, OCH3), 4.34 (q, 1 H, JAB = J
5
′
B-4
′
B = J
5
′
B-4
′
A = 8.5 Hz, H-5′B), 4.42 (dt, 1 H, JAB = J
5
′
A-4
′
A = 8.9 Hz, J
5
′
A-4
′
B = 5.9 Hz, H-5′A), 5.43 (dd, 1 H, J
1-2ax = 11.3 Hz, J
1-2eq = 2.2 Hz,
H-1), 6.25 (dd, 1 H, J
4-3 = 5.3 Hz, J
4-2eq = 1.5 Hz, H-4), 7.23 (d, 2 H, J = 6.9 Hz, H
o
), 7.27 (t, 1 H, J = 5.9 Hz, H
p
), 7.35 (t, 2 H, J = 7.4 Hz, H
m
); 13C NMR (100 MHz, CDCl3), δ 33.8 (C-2), 37.1 (C-3), 40.5 (C-4′), 52.7 (OCH3), 62.8 (C-5′), 77.7 (C-1), 111.9 (C-4), 127.6 (C
p
), 128.4 C
o
), 129.3 (C
m
), 143.2 (C
n
), 144.7 (C-5), 157.8 (C-2′), 163.1 (CO2).
17 A similar gap of reactivity was previously observed between 4a and 4d-e towards ketone enol ethers as the dienophiles: Martel A.
Leconte S.
Dujardin G.
Brown E.
Maisonneuve V.
Retoux R.
Eur. J. Org. Chem.
2002,
3:
514
18a
Ichikawa Y.
Nishiyama T.
Isobe M.
Synlett
2000,
1253
18b
Wolfe S.
Whangbo M.
Mitchell DJ.
Carbohydr. Res.
1979,
69:
1
19a
Gizecki P.
Dhal R.
Toupet L.
Dujardin G.
Org. Lett.
2000,
2:
585
19b
Gizecki P.
Ph.D. Thesis
CNRS-Université du Maine;
Le Mans:
2001.
19c Gizecki, P.; Dhal, R.; Dujardin, G.; submitted.
20 Selected data of 9: 1H NMR (400 MHz, CDCl3), δ 6.87 (1 H, dd, J = 14.3 and 1.2 Hz), 5.13 (1 H, dd, J = 14.3 and 6.4 Hz).IR(film): 3309 (NH); 1747 (C=O), 1670 (C=C), 1637 (C=O) cm-1.