Subscribe to RSS
DOI: 10.1055/s-2002-31914
Cross-coupling between 3-Pyridylmagnesium Chlorides and Heteroaromatic Halides
Publication History
Publication Date:
07 February 2007 (online)
![](https://www.thieme-connect.de/media/synlett/200206/lookinside/thumbnails/10.1055-s-2002-31914-1.jpg)
Abstract
Phenyl- and thienylpyridines were prepared by Pd(0)-catalyzed cross-coupling of 3-pyridylmagnesium chlorides with iodobenzene or iodothiophene at room temperature. Starting from bromo and chloro azines and diazines, the Ni(0)-catalyzed reaction proved more suitable to allow the synthesis of pyridylpyridines, pyridylquinolines and pyridyldiazines.
Key words
cross-coupling - heterocycles - magnesium - organometallic reagent - transition metals
-
1a
According to the MDL Drug Data Report, the most widespread heterocycles in pharmaceutically active compounds are pyridine (out of 15000 structures), imidazole (out of 11000), indole (out of 6700) and pyrimidine (out of 4500).
-
1b
Quéguiner G.Marsais F.Snieckus V.Epsztajn J. Adv. Heterocycl. Chem. 1991, 52: 187 - 2
Lehn JM. Supramolecular Chemistry VCH Verlasgesellschaft; Weinheim: 1995. - 3
Katritzky AR.Rees CW. Comprehensive Heterocyclic Chemistry Vol. 2: Pergamon Press; New York: 1984. - 4
Stanforth SP. Tetrahedron 1998, 54: 263 ; and references cited therein -
5a
Tamao K.Sumitani K.Kumada M. J. Am. Chem. Soc. 1972, 94: 4374 -
5b
Corriu RPJ.Masse JP. J. Chem. Soc., Chem. Commun. 1972, 144 -
5c
Pridgen LN. J. Heterocycl. Chem. 1975, 12: 443 -
5d
Albers WM.Canters GW.Reedijk J. Tetrahedron 1995, 51: 3897 -
5e
Böhm VPW.Weskamp T.Gstôttmayr CWK.Herrmann WA. Angew. Chem. Int. Ed. 2000, 39: 1602 -
5f
Diederich F.Stang PJ. Metal-Catalyzed Cross-Coupling Reactions Wiley-VCH; Weinheim: 1998. -
6a
Negishi E.-I.King AO.Okukado NJ. J. Org. Chem. 1977, 42: 1821 -
6b
Sakamoto T.Kondo Y.Murata Y.Yamanata H. Tetrahedron 1993, 43: 9713 -
6c
Trécourt F.Gervais B.Mallet M.Quéguiner G. J. Org. Chem. 1996, 61: 1673 -
6d
Trécourt F.Gervais B.Mongin O.Le Gal C.Mongin F.Quéguiner G. J. Org. Chem. 1998, 63: 2892 -
6e
Hargreaves SL.Pilkington BL.Russel SE.Worthington PA. Tetrahedron Lett. 2000, 41: 1653 -
6f
Karig G.Spencer JA.Gallagher T. Org. Lett. 2001, 3: 835 -
6g
Loren JC.Siegel JS. Angew. Chem. Int. Ed. 2001, 40: 754 -
7a
Miyaura N.Suzuki A. Chem. Rev. 1995, 95: 2457 -
7b
Suzuki A. J. Organomet. Chem. 1999, 576: 147 -
7c
Godard A.Turck A.Plé N.Marsais F.Quéguiner G. Trends Heterocycl. Chem. 1993, 3: 19 -
7d
Godard A.Marsais F.Plé N.Trécourt F.Turck A.Quéguiner G. Heterocycles 1995, 40: 1055 -
7e
Ishikura M.Kamada M.Terashima M. Synthesis 1984, 936 -
7f
Schomaker JM.Thomas TJ. J. Org. Chem. 2001, 66: 7125 -
8a
Stille JK. Angew. Chem. Int. Ed. 1986, 25: 508 -
8b
Mathieu J.Gros P.Fort Y. Tetrahedron Lett. 2001, 42: 1879 - To our knowledge, only one example concerns the use of a pyridylmagnesium halide in a metal transition-catalyzed cross-coupling reaction:
-
9a
Tamao K.Komada S.Nakajima I.Kumada M. Tetrahedron 1982, 38: 3347 ; where nickel-catalyzed reaction of 2-pyridylmagnesium chloride and 2-bromopyridine proceeds in 13% yield -
9b Besides, 2-, 3- and 4-pyridylmagnesium bromides have been used to react with phenyl pyridine-2-sulfoxides:
Furukawa N.Shibutani T.Fujihara H. Tetrahedron Lett. 1987, 28: 5845 -
9c Also see:
Furukawa N.Shibutani T.Fujihara H. Tetrahedron Lett. 1989, 30: 7091 -
10a
Mongin F.Quéguiner G. Tetrahedron 2001, 57: 4059 -
10b
Turck A.Plé N.Mongin F.Quéguiner G. Tetrahedron 2001, 57: 4489 -
11a
Trécourt F.Breton G.Bonnet V.Mongin F.Marsais F.Quéguiner G. Tetrahedron Lett. 1999, 40: 4339 -
11b
Trécourt F.Breton G.Bonnet V.Mongin F.Marsais F.Quéguiner G. Tetrahedron 2000, 56: 1349 - Concerning the use of this catalyst, see:
-
16a
Hayashi T.Konishi M.Kobori Y.Kumada M.Higuchi T.Hirotsu K. J. Am. Chem. Soc. 1984, 106: 158 -
16b
Amatore C.Jutand A. J. Organomet. Chem. 1999, 576: 254 -
16c
Sato F.Urabe H.Okamoto S. Chem. Rev. 2000, 100: 2757 -
16d
Bonnet V.Mongin F.Trécourt F.Quéguiner G.Knochel P. Tetrahedron Lett. 2001, 42: 5717 - 17
Fleming I. Frontier Orbitals and Organic Chemical Reactions John Wiley and Sons; Chichester: 1978. - 19
Nielsen SF.Nielsen EO.Olsen GM.Liljefors T.Peters D. J. Med. Chem. 2000, 43: 2217 - 20
Wynberg H.Van Bergen TJ.Kellogg RM. J. Org. Chem. 1969, 34: 3175 - 21
Novak I.Ng S.-C.Mok C.-Y.Huang H.-H.Fang J.Wang KK.-T. J. Chem. Soc., Perkin Trans. 2 1994, 1771 - 22
Ishikura M.Ohta T.Terashima M. Chem. Pharm. Bull. 1985, 33: 4755 - 23
Van Der Stoel RE.Van Der Plas HC. J. Chem. Soc., Perkin Trans. 1 1979, 2393 - 24
Hasebe M.Kogawa K.Tsuchiya T. Tetrahedron Lett. 1984, 25: 3887
References
In a general procedure, the required 3-bromopyridine (1.2 mmol) was dissolved in THF (5 mL) and a solution of i-PrMgCl (1.4 mmol) in THF (0.70 mL) was added dropwise at r.t. to the mixture. After 1 h at the same temperature, the iodo derivative (1.0 mmol) and Pd(PPh3)4 (12 mg, 10 µmol) were introduced; the mixture was stirred for 17 h and quenched with an aqueous saturated NH4Cl solution (5 mL). The aqueous solution was extracted several times with CH2Cl2. The organic layer was dried over MgSO4, the solvents were evaporated under reduced pressure and the crude compound was chromatographed on a silica gel column. 3-Phenylpyridine(2a) starting from 3-bromopyridine and using iodobenzene (eluent: CH2Cl2-Et2O, 90:10). Yield: 60%. The physical and spectral data are analogous to those obtained for a commercial sample. 3-Bromo-5-phenylpyridine(2b) starting from 3,5-dibromopyridine and using iodobenzene (eluent: CH2Cl2). Yield: 52%; the 1H NMR data are in accordance with those of the literature; [19] 13C NMR (CDCl3) δ 120.7, 126.9 (2C), 128.4, 128.9 (2C), 135.9, 136.4, 137.7, 146.1, 149.1; IR (KBr): 3019, 1890, 1580, 1542, 1430, 1404, 1317, 1282, 1170, 1106, 1007, 880, 795, 763, 702, 670 cm-1. Anal. Calcd for C11H8BrN (234.10): C, 56.44; H, 3.44; N, 5.98. Found: C, 56.60; H, 3.51; N, 6.17%. 5-Bromo-2-fluoro-3-phenylpyridine(2c) starting from 3,5-dibromo-2-fluoropyridine and using iodobenzene (eluent: CH2Cl2). Yield: 58%; 1H NMR (CDCl3) δ 7.4 (m, 5 H, Ph), 7.9 (ddd, 1 H, J = 8.4, 2.5, 0.5 Hz, H4), 8.15 (d, 1 H, J = 2.5 Hz, H6); 13C NMR (CDCl3) δ 116.5, 125.5, 128.5 (2C), 128.7 (2C), 128.9, 132.0, 142.5, 146.5, 159.0; IR (KBr): 3063, 1588, 1556, 1455, 1417, 1284, 1243, 1199, 1108, 1041, 1016, 901, 775, 731, 697, 636 cm-1. Anal. Calcd for C11H7BrFN (252.09): C, 52.41; H, 2.80; N, 5.56. Found: C, 52.19; H, 2.65; N, 5.48%.
13The toxicity of nickel salts led us to turn first to palladium-catalyzed cross-coupling reactions.
143-(2-Thienyl)pyridine(3) [20] using the general procedure,12 starting from 3-bromopyridine and 2-iodothiophene (eluent: Et2O-petroleum ether, 50:50). Yield: 54%; the 1H NMR data are in accordance with those of the literature. [21]
152,3′-Bipyridine(4): Pd(dba)2 (29 mg, 0.050 mmol), dppf (28 mg, 0.050 mmol) and, 10 min later, 2-bromopyridine (96 µL, 1.0 mmol) were added to THF (3 mL). After stirring for 30 min at r.t., this solution was transferred at r.t. to a freshly prepared (see general procedure 1) solution of 3-pyridylmagnesium chloride (1.2 mmol) in THF (5-6 mL). After 4 h at reflux, the mixture was quenched with an aqueous saturated NH4Cl solution (5 mL) to give 4 (eluent: CH2Cl2-Et2O, 90:10). Yield: 64%; the physical and spectral data are analogous to those obtained for a commercial sample.
18In a general procedure, Ni(acac)2 (13 mg, 0.050 mmol), dppe (20 mg, 0.050 mmol) and, 10 min later, the required 2-halo substrate (1.0 mmol) were added to THF (3 mL). After stirring for 30 min at r.t., this solution was transferred at r.t. to a freshly prepared (see general procedure 1) solution of 3-pyridylmagnesium chloride (1.2 mmol) in THF (5-6 mL). After 18 h at r.t., the mixture was quenched with an aqueous saturated NH4Cl solution (5 mL). 6-Bromo-2-(3-pyridyl)pyridine(5a) starting from 2,6-dibromopyridine (eluent: CH2Cl2-Et2O, 90:10). Yield: 34%; mp 82-84 °C (lit. [22] mp 73-74 °C). 5-Bromo-2-(3-pyridyl)pyridine (5b) starting from 2,5-dibromopyridine (eluent: CH2Cl2-Et2O, 90:10). Yield: 61%; mp 72-74 °C (lit. [22] mp 75-77 °C); 13C NMR (CDCl3) δ 120.6, 121.9, 121.9, 124.3, 134.4, 139.1, 148.2, 150.4, 151.5, 153.6. Anal. Calcd for C10H7BrN2 (235.08): C, 51.09; H, 3.00; N, 11.92. Found: C, 51.14; H, 3.06; N, 11.79%. 2-(3-Pyridyl)quinoline (5c) starting from 2-chloroquinoline (eluent: CH2Cl2-Et2O, 90:10). Yield: 76%; mp 72 °C; the 1H NMR data are in accordance with those of the literature; [6b] 13C NMR (CDCl3) δ 117.4, 122.6, 125.7, 126.3, 126.5, 128.7, 128.9, 133.9, 134.1, 136.1, 147.3, 147.7, 149.1, 153.5; IR (KBr): 2925, 2855, 1577, 1304, 1129, 1020, 811, 786, 755, 710 cm-1. Anal. Calcd for C14H10N2 (206.25): C, 81.53; H, 4.89; N, 13.58. Found: C, 81.27; H, 5.02; N, 13.29%. 2-(3-Pyridyl)pyrimidine (5d) starting from 2-chloropyrimidine (eluent: CH2Cl2-Et2O, 90:10). Yield: 69%; mp 52 °C (lit. [23] mp 48-49 °C); 13C NMR (CDCl3) δ 118.7, 122.3, 132.1, 134.4, 148.8, 150.3, 156.3 (2C), 161.9; IR (KBr): 3044, 2963, 2928, 2854, 1582, 1567, 1408, 1261, 1083, 1021, 787, 708 cm-1. Anal. Calcd for C9H7N3 (157.18): C, 68.78; H, 4.49; N, 26.73. Found: C, 68.54; H, 4.18; N, 26.42%. 2-(3-Pyridyl)pyrazine (5e) [24] starting from 2-chloropyrazine (eluent: CH2Cl2-Et2O, 90:10). Yield: 69%; mp 92-94 °C; 1H NMR (CDCl3) δ 7.38 (dd, 1 H, J = 7.9, 4.5 Hz, H5 ′), 8.27 (dt, 1 H, J = 7.9, 1.9 Hz, H4 ′), 8.51 (d, 1 H, J = 1.5 Hz, H5), 8.61 (d, 1 H, J = 1.5 Hz, H6), 8.65 (dd, 4 H, J = 4.5, 1.9 Hz, H6 ′), 9.00 (s, 1 H, H3), 9.18 (d, 1 H, J = 1.5 Hz, H2 ′); 13C NMR (CDCl3) δ 124.3, 130.1, 134.8, 142.4, 144.2, 144.9, 148.4, 150.8, 151.1; IR (KBr): 2925, 2854, 1416, 1082, 1013, 815, 702 cm-1. Anal. Calcd for C9H7N3 (157.18): C, 68.78; H, 4.49; N, 26.73. Found: C, 68.48; H, 4.19; N, 26.47%.