References
1a According to the MDL Drug Data Report, the most widespread heterocycles in pharmaceutically active compounds are pyridine (out of 15000 structures), imidazole (out of 11000), indole (out of 6700) and pyrimidine (out of 4500).
1b
Quéguiner G.
Marsais F.
Snieckus V.
Epsztajn J.
Adv. Heterocycl. Chem.
1991,
52:
187
2
Lehn JM.
Supramolecular Chemistry
VCH Verlasgesellschaft;
Weinheim:
1995.
3
Katritzky AR.
Rees CW.
Comprehensive Heterocyclic Chemistry
Vol. 2:
Pergamon Press;
New York:
1984.
4
Stanforth SP.
Tetrahedron
1998,
54:
263 ; and references cited therein
5a
Tamao K.
Sumitani K.
Kumada M.
J. Am. Chem. Soc.
1972,
94:
4374
5b
Corriu RPJ.
Masse JP.
J. Chem. Soc., Chem. Commun.
1972,
144
5c
Pridgen LN.
J. Heterocycl. Chem.
1975,
12:
443
5d
Albers WM.
Canters GW.
Reedijk J.
Tetrahedron
1995,
51:
3897
5e
Böhm VPW.
Weskamp T.
Gstôttmayr CWK.
Herrmann WA.
Angew. Chem. Int. Ed.
2000,
39:
1602
5f
Diederich F.
Stang PJ.
Metal-Catalyzed Cross-Coupling Reactions
Wiley-VCH;
Weinheim:
1998.
6a
Negishi E.-I.
King AO.
Okukado NJ.
J. Org. Chem.
1977,
42:
1821
6b
Sakamoto T.
Kondo Y.
Murata Y.
Yamanata H.
Tetrahedron
1993,
43:
9713
6c
Trécourt F.
Gervais B.
Mallet M.
Quéguiner G.
J. Org. Chem.
1996,
61:
1673
6d
Trécourt F.
Gervais B.
Mongin O.
Le Gal C.
Mongin F.
Quéguiner G.
J. Org. Chem.
1998,
63:
2892
6e
Hargreaves SL.
Pilkington BL.
Russel SE.
Worthington PA.
Tetrahedron Lett.
2000,
41:
1653
6f
Karig G.
Spencer JA.
Gallagher T.
Org. Lett.
2001,
3:
835
6g
Loren JC.
Siegel JS.
Angew. Chem. Int. Ed.
2001,
40:
754
7a
Miyaura N.
Suzuki A.
Chem. Rev.
1995,
95:
2457
7b
Suzuki A.
J. Organomet. Chem.
1999,
576:
147
7c
Godard A.
Turck A.
Plé N.
Marsais F.
Quéguiner G.
Trends Heterocycl. Chem.
1993,
3:
19
7d
Godard A.
Marsais F.
Plé N.
Trécourt F.
Turck A.
Quéguiner G.
Heterocycles
1995,
40:
1055
7e
Ishikura M.
Kamada M.
Terashima M.
Synthesis
1984,
936
7f
Schomaker JM.
Thomas TJ.
J. Org. Chem.
2001,
66:
7125
8a
Stille JK.
Angew. Chem. Int. Ed.
1986,
25:
508
8b
Mathieu J.
Gros P.
Fort Y.
Tetrahedron Lett.
2001,
42:
1879
To our knowledge, only one example concerns the use of a pyridylmagnesium halide in a metal transition-catalyzed cross-coupling reaction:
9a
Tamao K.
Komada S.
Nakajima I.
Kumada M.
Tetrahedron
1982,
38:
3347 ; where nickel-catalyzed reaction of 2-pyridylmagnesium chloride and 2-bromopyridine proceeds in 13% yield
9b Besides, 2-, 3- and 4-pyridylmagnesium bromides have been used to react with phenyl pyridine-2-sulfoxides: Furukawa N.
Shibutani T.
Fujihara H.
Tetrahedron Lett.
1987,
28:
5845
9c Also see: Furukawa N.
Shibutani T.
Fujihara H.
Tetrahedron Lett.
1989,
30:
7091
10a
Mongin F.
Quéguiner G.
Tetrahedron
2001,
57:
4059
10b
Turck A.
Plé N.
Mongin F.
Quéguiner G.
Tetrahedron
2001,
57:
4489
11a
Trécourt F.
Breton G.
Bonnet V.
Mongin F.
Marsais F.
Quéguiner G.
Tetrahedron Lett.
1999,
40:
4339
11b
Trécourt F.
Breton G.
Bonnet V.
Mongin F.
Marsais F.
Quéguiner G.
Tetrahedron
2000,
56:
1349
12 In a general procedure, the required 3-bromopyridine (1.2 mmol) was dissolved in THF (5 mL) and a solution of i-PrMgCl (1.4 mmol) in THF (0.70 mL) was added dropwise at r.t. to the mixture. After 1 h at the same temperature, the iodo derivative (1.0 mmol) and Pd(PPh3)4 (12 mg, 10 µmol) were introduced; the mixture was stirred for 17 h and quenched with an aqueous saturated NH4Cl solution (5 mL). The aqueous solution was extracted several times with CH2Cl2. The organic layer was dried over MgSO4, the solvents were evaporated under reduced pressure and the crude compound was chromatographed on a silica gel column. 3-Phenylpyridine(2a) starting from 3-bromopyridine and using iodobenzene (eluent: CH2Cl2-Et2O, 90:10). Yield: 60%. The physical and spectral data are analogous to those obtained for a commercial sample. 3-Bromo-5-phenylpyridine(2b) starting from 3,5-dibromopyridine and using iodobenzene (eluent: CH2Cl2). Yield: 52%; the 1H NMR data are in accordance with those of the literature;
[19]
13C NMR (CDCl3) δ 120.7, 126.9 (2C), 128.4, 128.9 (2C), 135.9, 136.4, 137.7, 146.1, 149.1; IR (KBr): 3019, 1890, 1580, 1542, 1430, 1404, 1317, 1282, 1170, 1106, 1007, 880, 795, 763, 702, 670 cm-1. Anal. Calcd for C11H8BrN (234.10): C, 56.44; H, 3.44; N, 5.98. Found: C, 56.60; H, 3.51; N, 6.17%. 5-Bromo-2-fluoro-3-phenylpyridine(2c) starting from 3,5-dibromo-2-fluoropyridine and using iodobenzene (eluent: CH2Cl2). Yield: 58%; 1H NMR (CDCl3) δ 7.4 (m, 5 H, Ph), 7.9 (ddd, 1 H, J = 8.4, 2.5, 0.5 Hz, H4), 8.15 (d, 1 H, J = 2.5 Hz, H6); 13C NMR (CDCl3) δ 116.5, 125.5, 128.5 (2C), 128.7 (2C), 128.9, 132.0, 142.5, 146.5, 159.0; IR (KBr): 3063, 1588, 1556, 1455, 1417, 1284, 1243, 1199, 1108, 1041, 1016, 901, 775, 731, 697, 636 cm-1. Anal. Calcd for C11H7BrFN (252.09): C, 52.41; H, 2.80; N, 5.56. Found: C, 52.19; H, 2.65; N, 5.48%.
13 The toxicity of nickel salts led us to turn first to palladium-catalyzed cross-coupling reactions.
14 3-(2-Thienyl)pyridine(3)
[20]
using the general procedure,12 starting from 3-bromopyridine and 2-iodothiophene (eluent: Et2O-petroleum ether, 50:50). Yield: 54%; the 1H NMR data are in accordance with those of the literature.
[21]
15 2,3′-Bipyridine(4): Pd(dba)2 (29 mg, 0.050 mmol), dppf (28 mg, 0.050 mmol) and, 10 min later, 2-bromopyridine (96 µL, 1.0 mmol) were added to THF (3 mL). After stirring for 30 min at r.t., this solution was transferred at r.t. to a freshly prepared (see general procedure 1) solution of 3-pyridylmagnesium chloride (1.2 mmol) in THF (5-6 mL). After 4 h at reflux, the mixture was quenched with an aqueous saturated NH4Cl solution (5 mL) to give 4 (eluent: CH2Cl2-Et2O, 90:10). Yield: 64%; the physical and spectral data are analogous to those obtained for a commercial sample.
Concerning the use of this catalyst, see:
16a
Hayashi T.
Konishi M.
Kobori Y.
Kumada M.
Higuchi T.
Hirotsu K.
J. Am. Chem. Soc.
1984,
106:
158
16b
Amatore C.
Jutand A.
J. Organomet. Chem.
1999,
576:
254
16c
Sato F.
Urabe H.
Okamoto S.
Chem. Rev.
2000,
100:
2757
16d
Bonnet V.
Mongin F.
Trécourt F.
Quéguiner G.
Knochel P.
Tetrahedron Lett.
2001,
42:
5717
17
Fleming I.
Frontier Orbitals and Organic Chemical Reactions
John Wiley and Sons;
Chichester:
1978.
18 In a general procedure, Ni(acac)2 (13 mg, 0.050 mmol), dppe (20 mg, 0.050 mmol) and, 10 min later, the required 2-halo substrate (1.0 mmol) were added to THF (3 mL). After stirring for 30 min at r.t., this solution was transferred at r.t. to a freshly prepared (see general procedure 1) solution of 3-pyridylmagnesium chloride (1.2 mmol) in THF (5-6 mL). After 18 h at r.t., the mixture was quenched with an aqueous saturated NH4Cl solution (5 mL). 6-Bromo-2-(3-pyridyl)pyridine(5a) starting from 2,6-dibromopyridine (eluent: CH2Cl2-Et2O, 90:10). Yield: 34%; mp 82-84 °C (lit.
[22]
mp 73-74 °C). 5-Bromo-2-(3-pyridyl)pyridine (5b) starting from 2,5-dibromopyridine (eluent: CH2Cl2-Et2O, 90:10). Yield: 61%; mp 72-74 °C (lit.
[22]
mp 75-77 °C); 13C NMR (CDCl3) δ 120.6, 121.9, 121.9, 124.3, 134.4, 139.1, 148.2, 150.4, 151.5, 153.6. Anal. Calcd for C10H7BrN2 (235.08): C, 51.09; H, 3.00; N, 11.92. Found: C, 51.14; H, 3.06; N, 11.79%. 2-(3-Pyridyl)quinoline (5c) starting from 2-chloroquinoline (eluent: CH2Cl2-Et2O, 90:10). Yield: 76%; mp 72 °C; the 1H NMR data are in accordance with those of the literature;
[6b]
13C NMR (CDCl3) δ 117.4, 122.6, 125.7, 126.3, 126.5, 128.7, 128.9, 133.9, 134.1, 136.1, 147.3, 147.7, 149.1, 153.5; IR (KBr): 2925, 2855, 1577, 1304, 1129, 1020, 811, 786, 755, 710 cm-1. Anal. Calcd for C14H10N2 (206.25): C, 81.53; H, 4.89; N, 13.58. Found: C, 81.27; H, 5.02; N, 13.29%. 2-(3-Pyridyl)pyrimidine (5d) starting from 2-chloropyrimidine (eluent: CH2Cl2-Et2O, 90:10). Yield: 69%; mp 52 °C (lit.
[23]
mp 48-49 °C); 13C NMR (CDCl3) δ 118.7, 122.3, 132.1, 134.4, 148.8, 150.3, 156.3 (2C), 161.9; IR (KBr): 3044, 2963, 2928, 2854, 1582, 1567, 1408, 1261, 1083, 1021, 787, 708 cm-1. Anal. Calcd for C9H7N3 (157.18): C, 68.78; H, 4.49; N, 26.73. Found: C, 68.54; H, 4.18; N, 26.42%. 2-(3-Pyridyl)pyrazine (5e)
[24]
starting from 2-chloropyrazine (eluent: CH2Cl2-Et2O, 90:10). Yield: 69%; mp 92-94 °C; 1H NMR (CDCl3) δ 7.38 (dd, 1 H, J = 7.9, 4.5 Hz, H5
′), 8.27 (dt, 1 H, J = 7.9, 1.9 Hz, H4
′), 8.51 (d, 1 H, J = 1.5 Hz, H5), 8.61 (d, 1 H, J = 1.5 Hz, H6), 8.65 (dd, 4 H, J = 4.5, 1.9 Hz, H6
′), 9.00 (s, 1 H, H3), 9.18 (d, 1 H, J = 1.5 Hz, H2
′); 13C NMR (CDCl3) δ 124.3, 130.1, 134.8, 142.4, 144.2, 144.9, 148.4, 150.8, 151.1; IR (KBr): 2925, 2854, 1416, 1082, 1013, 815, 702 cm-1. Anal. Calcd for C9H7N3 (157.18): C, 68.78; H, 4.49; N, 26.73. Found: C, 68.48; H, 4.19; N, 26.47%.
19
Nielsen SF.
Nielsen EO.
Olsen GM.
Liljefors T.
Peters D.
J. Med. Chem.
2000,
43:
2217
20
Wynberg H.
Van Bergen TJ.
Kellogg RM.
J. Org. Chem.
1969,
34:
3175
21
Novak I.
Ng S.-C.
Mok C.-Y.
Huang H.-H.
Fang J.
Wang KK.-T.
J. Chem. Soc., Perkin Trans. 2
1994,
1771
22
Ishikura M.
Ohta T.
Terashima M.
Chem. Pharm. Bull.
1985,
33:
4755
23
Van Der Stoel RE.
Van Der Plas HC.
J. Chem. Soc., Perkin Trans. 1
1979,
2393
24
Hasebe M.
Kogawa K.
Tsuchiya T.
Tetrahedron Lett.
1984,
25:
3887