RSS-Feed abonnieren
DOI: 10.1055/s-2002-31933
Solid-Phase Synthesis of a Phytoalexin Elicitor-Active Tetraglucosyl Glucitol
Publikationsverlauf
Publikationsdatum:
07. Februar 2007 (online)
Abstract
A solid-phase synthesis of pentasaccharide 1 that has phytoalexin elicitor activity for rice is described. Efficient block-type synthesis by β-selective glycosylation with thioglycosides A 3 and B 2 at the 3-position of the polymer-supported glycosyl acceptor has been demonstrated.
Key words
glycosylations - oligosaccharides - phytoalexin elicitor activity - solid-phase synthesis - thioglycosides
- 1
Yamaguchi T.Yamada A.Hong N.Ogawa T.Ishii T.Shibuya N. The Plant Cell 2000, 12: 817 - 2
Taylor CM. In Combinatorial ChemistryWilson SR.Czarnik AW. John Wiley and Sons, Inc.; New York: 1997. p.207 -
3a
Yamada H.Harada T.Takahashi T. J. Am. Chem. Soc. 1994, 116: 7919 -
3b
Nicolaou KC.Winssinger N.Pastor J.DeRoose F. J. Am. Chem. Soc. 1997, 119: 449 -
3c
Nicolaou KC.Watanabe N.Li J.Pastor J.Winssinger N. Angew. Chem. Int. Ed. 1998, 37: 1559 -
3d
Geurtsen R.Côté F.Hahn MG.Boons G.-J. J. Org. Chem. 1999, 64: 7828 -
3e
Plante OJ.Palmacci ER.Seeberger PH. Science (Washington D.C.) 2001, 291: 1523 -
3f
Yamada H.Takimoto H.Ikeda T.Tsukamoto H.Harada T.Takahashi T. Synlett 2001, 1751 -
4a
Du Y.Zhang M.Kong F. Org. Lett. 2000, 2: 3797 -
4b
Yang G.Kong F. Synlett 2000, 1423 - 5
Amaya T.Tanaka H.Yamaguchi T.Shibuya N.Takahashi T. Tetrahedron Lett. 2001, 42: 9191 - 6 In
Solid Support Oligosaccharide Synthesis and Combinatorial Carbohydrate Libraries
Seeberger PH. John Wiley and Sons, Inc.; New York: 2001. - Recent reports utilizing an ester linker in solid-phase glycosylation:
-
7a
Zhu T.Boons G.-J. Angew. Chem. Int. Ed. 1998, 37: 1898 -
7b
Egusa K.Fukase K.Nakai Y.Kusumoto S. Synlett 2000, 27 -
7c
Roussel F.Knerr L.Grathwohl M.Schmidt RR. Org. Lett. 2000, 2: 3043 - 8
Deng S.Yu B.Hui Y.Yu H.Han X. Carbohydr. Res. 1999, 317: 53 - 9
Ek M.Garegg PJ.Hultberg H.Oscarson S. J. Carbohydr. Chem. 1983, 2: 305 - Preparation of 2-O-benzoyl derivative instead of 2-O-(4-methyl)benzoyl one was reported. See:
-
10a
Garegg PJ.Hällgren C. J. Carbohydr. Chem. 1992, 11: 425 -
10b
Ekelöf K.Oscarson S. J. Org. Chem. 1996, 61: 7711 -
11a
Mootoo DR.Konradsson P.Udodong U.Fraser-Reid B. J. Am. Chem. Soc. 1988, 110: 5583 -
11b
Fraser-Reid B.Udodong U.Wu Z.Ottosson H.Merritt JR.Rao CS.Roberts C.Madsen R. Synlett 1992, 927 - 14
Valerio RM.Bray AM.Maeji NJ. Int. J. Peptide Protein Res. 1994, 44: 158 ; Mimotopes Pty Ltd, 11 Duerdin Street, Clayton Victoria 3168 Australia:http://www.mimotopes.com.au - 15
Kaiser E.Colescott RL.Bossinger CD.Cook PI. Anal. Biochem. 1970, 34: 595 - 16
Veenemam GH.van Leeuwen SH.van Boom JH. Tetrahedron Lett. 1990, 31: 1331 - 17
Bunin BA. The Combinatorial Index Academic Press; San Diego: 1998. p.219 - 18
Fukase K.Nakai Y.Egusa K.Porco JA.Kusumoto S. Synlett 1999, 1074 -
19a
Spectral data of all compounds shown in this manuscript are in good agreement. β-Orientation of the glycosyl linkage was assisted by anchoring effect of the benzoate group at the 2-position and was determined by the chemical shifts of 13C NMR of anomeric carbons.
-
19b
Kotowycz G.Lemieux RU. Chem. Rev. 1973, 73: 669
References
Compound 7 was prepared from 2 by deprotection of TBS (see ref. [3b] ) and glycosidation of the corresponding 3,6-hydroxy free phenyl thioglucoside with excess benzyl alcohol (NIS-TfOH, CH2Cl2, MS 4 Å, 0 °C, 52%).
13Commercially available from Argonaut Technologies, San Carlos, California: http://www.argotech.com
20Spectral data of B 2 : 1H NMR (400 MHz, CDCl3): δ = -0.22 (s, 3 H), -0.11 (s, 3 H), 0.72 (s, 9 H), 1.08 (dd, 3 H, J = 7.2, 7.2 Hz), 2.39 (s, 3 H), 2.49 (dq, 1 H, J = 7.2, 12.5 Hz), 2.59 (dq, 1 H, J = 7.2, 12.5 Hz), 3.41 (dd, 1 H, J = 8.7, 9.7 Hz), 3.45-3.57 (m, 2 H), 3.63 (dd, 1 H, J = 5.3, 11.1 Hz), 3.72-3.88 (m, 5 H), 4.12 (brd, 1 H, J = 10.6 Hz), 4.37 (d, 1 H, J = 10.2 Hz), 4.45 (d, 1 H, J = 11.6 Hz), 4.53-4.59 (m, 4 H), 4.64 (d, 1 H, J = 12.1 Hz), 4.65 (d, 1 H, J = 11.1 Hz), 4.71 (d, 1 H, J = 11.1 Hz), 4.80 (d, 1 H, J = 11.1 Hz), 5.13 (dd, 1 H, J = 9.2, 9.7 Hz), 5.31 (dd, 1 H, J = 8.2, 8.2 Hz), 7.09-7.39 (m, 22 H), 7.42 (dd, 2 H, J = 7.3, 7.7 Hz), 7.55 (t, 1 H, J = 7.3 Hz), 7.89 (d, 2 H, J = 7.7 Hz), 8.01 (d, 2 H, J = 7.3 Hz); 13C NMR (99.6 MHz, CDCl3): δ = -4.4, -4.1, 14.8, 17.7, 21.6, 23.4, 25.6, 67.9, 68.8, 73.0, 73.6, 74.6, 75.0, 75.3, 77.9, 78.5, 79.1, 82.9, 83.1, 101.1, 127.2, 127.4, 127.6, 127.8, 128.0, 128.2 × 2, 128.4, 129.1, 129.9, 130.4, 132.9, 137.9, 138.0, 138.2, 143.6, 165.0, 165.3; MS (FAB): 1105 [M + Na]+.
21Spectral data of 21: [α]D 27 +22.6 (c 0.400 in CHCl3); 1H NMR (400 MHz, CDCl3): δ = 3.18-3.78 (m, 27 H), 3.85 (dd, J = 9.2, 9.2 Hz, 1 H), 3.96 (d, J = 9.7 Hz, 1 H), 4.05 (brd, J = 7.25 Hz, 1 H), 4.25 (d, J = 12.1 Hz, 1 H), 4.30 (d, J = 12.1 Hz, 1 H), 4.38-4.81 (m, 18 H), 4.86 (d, J = 12.1 Hz, 1 H), 4.89 (d, J = 11.6 Hz, 1 H), 5.00 (d, J = 11.1 Hz, 1 H), 5.07 (d, J = 11.1 Hz, 1 H), 5.15 (d, J = 11.1 Hz, 1 H), 7.15-7.35 (m, 50 H); 13C NMR (99.6 MHz, CDCl3): δ = 61.8, 68.2, 68.3, 68.9, 71.5, 73.1, 73.3, 73.4, 73.7, 74.4, 74.6, 74.7, 74.8, 74.9, 75.0, 75.2, 75.3, 75.4, 76.0, 77.6, 84.4, 84.6, 85.5, 86.6, 87.9, 101.4, 103.4, 103.6, 104.9, 105.5, 127.5, 127.6, 127.7, 127.8, 127.9 × 2, 128.0, 128.1, 128.2, 128.3, 128.5, 128.8, 130.1, 133.5, 137.0, 137.8, 137.9, 138.1 × 2, 138.2, 138.3, 138.4 × 2, 138.5, 138.8, 138.9; MS (ESI-TOF): 1752 [M + Na]+.