Z Gastroenterol 2002; 40(6): 425-432
DOI: 10.1055/s-2002-32131
Übersichten
© Karl Demeter Verlag im Georg Thieme Verlag Stuttgart · New York

Molekulargenetik der Cholesterin-Cholelithiasis: Identifizierung humaner und muriner Gallensteingene

Molecular Genetics of Cholesterol Cholelithiasis: Identification of Human and Murine Gallstone GenesA. Figge, S. Matern, F. Lammert
  • 1Medizinische Klinik III, Universitätsklinikum der RWTH Aachen
Further Information

Publication History

15.11.2001

17.12.2001

Publication Date:
10 June 2002 (online)

Zusammenfassung

Die Cholesterin-Cholelithiasis, eine der verbreitetsten gastroenterologischen Erkrankungen in westlichen Ländern, ist eine polygene Erkrankung, die aus einer gestörten biliären Cholesterinhomöostase resultiert. Durch Assoziationsstudien zwischen Gallensteinphänotypen und einzelnen Genen konnten bisher sechs humane Gallensteinkandidatengene identifiziert werden. Polymorphismen in den Genen der Apolipoproteine B und E, der Phospholipid-Flippase (ABCB4), des Cholesterinester-Transferproteins (CETP), der Cholesterin-7α-Hydroxylase (CYP7A1) und des ilealen Gallensäurentransporters (SLC10A2) korrelieren mit dem Auftreten von Gallensteinen. Die Quantitative Trait-Locus-(QTL-)Analyse erlaubt die Lokalisation weiterer unbekannter Gallensteingene in Inzuchtmäusen. Durch die unterschiedliche Gallensteinprädisposition verschiedener Inzuchtstämme konnten 5 lithogene (Lith-)Loci identifiziert werden. Als attraktive Kandidatengene wurden hepatobiliäre Lipidtransportproteine wie die Gallensäurenexportpumpe (Abcb11) und Schlüsselenzyme des Lipoproteinstoffwechsels wie die hepatische Lipase (Lipc) etabliert. Der rasche Fortschritt der Genomprojekte bildet die Grundlage zur Analyse der orthologen LITH-Gene bei Gallensteinpatienten, die neue Ansätze für eine patientenbezogene Risikoabschätzung und pharmakologische Präventionsstrategien eröffnen könnte.

Abstract

Cholesterol cholelithiasis is one of the most common gastroenterological diseases in Western countries. It is a polygenic disease resulting from disturbed biliary cholesterol homeostasis. Association studies identified six human gallstone candidate genes. Polymorphisms in the genes encoding the apolipoproteins B and E, phospholipid flippase (ABCB4), cholesterol ester transfer protein (CETP), cholesterol-7α-hydroxylase (CYP7A1) and ileal bile acid transporter (SLC10A2) are correlated with gallstone prevalence. Quantitative Trait Locus (QTL) analysis localises additional unknown gallstone genes in inbred mice. Based on the natural variation of cholesterol gallstone susceptibility among different inbred strains, 5 lithogenic (Lith) loci have been identified. Hepatobiliary transporters (e. g. bile salt export pump Abcb11) and key proteins of the lipoprotein metabolism (e. g. hepatic lipase Lipc) could be established as creedal candidate genes for Lith loci. The rapid progress of mouse and human genome projects provides the basis for the analysis of orthologous human LITH genes in gallstone patients, which might offer new prospects for individual risk assessment and molecular targets for stone prevention.

Literatur

  • 1 Matern S. Cholelithiasis. Gerok W, Blum HE Hepatologie München; Urban & Schwarzenberg 1995: 565-596
  • 2 Gerste B. Operationshäufigkeit in Krankenhäusern 1996 bis 1999. Arnold M, Litsch M, Schellschmidt H Krankenhaus-Report 2000 Stuttgart; Schattauer 2001: 415-424
  • 3 LaMont J T, Carey M C. Cholesterol gallstone formation. 2. Pathobiology and pathomechanics.  Prog Liver Dis. 1992;  10 165-191
  • 4 Paumgartner G, Sauerbruch T. Gallstones: Pathogenesis.  Lancet. 1991;  338 1117-1121
  • 5 Apstein M D, Carey M C. Pathogenesis of cholesterol gallstones: A parsimonious hypothesis.  Eur J Clin Invest. 1996;  26 343-352
  • 6 Busch N, Matern S. Current concepts in cholesterol gallstone pathogenesis.  Eur J Clin Invest. 1991;  21 453-460
  • 7 Burkitt D P, Tunstall M. Gallstones: Geographical and chronological features.  J Trop Med Hyg. 1975;  78 140-144
  • 8 Brett M, Barker D J. The world distribution of gallstones.  Int J Epidemiol. 1976;  5 335-341
  • 9 Maclure K M, Hayes K C, Colditz G A. et al . Weight, diet, and the risk of symptomatic gallstones in middle-aged women.  N Engl J Med. 1989;  321 563-569
  • 10 Attili A F, Scafato E, Marchioli R, Marfisi R M, Festi D. Diet and gallstones in Italy: The cross-sectional MICOL results.  Hepatology. 1998;  27 1492-1498
  • 11 Sampliner R E, Bennett P H, Comess L J, Rose F A, Burch T A. Gallbladder disease in pima indians. Demonstration of high prevalence and early onset by cholecystography.  N Engl J Med. 1970;  283 1358-1364
  • 12 Reid J M, Fullmer S D, Pettigrew K D. et al . Nutrient intake of Pima Indian women: Relationships to diabetes mellitus and gallbladder disease.  Am J Clin Nutr. 1971;  24 1281-1289
  • 13 Van der Linden W. Genetic factors in gallstone disease.  Clin Gastroenterol. 1973;  2 603-614
  • 14 Kesäniemi Y A, Koskenvuo M, Vuoristo M, Miettinen T A. Biliary lipid composition in monozygotic and dizygotic pairs of twins.  Gut. 1989;  30 1750-1756
  • 15 Kratzer W, Kron M, Hay B, Pfeiffer M M, Kachele V. Prävalenz der Cholezystolithiasis in Süddeutschland - eine sonographische Untersuchung an 2498 Personen einer ländlichen Bevölkerung.  Z Gastroenterol. 1999;  37 1157-1162
  • 16 Attili A F, Capocaccia R, Carulli N. et al . Factors associated with gallstone disease in the MICOL experience. Multicenter Italian Study on Epidemiology of Cholelithiasis.  Hepatology. 1997;  26 809-818
  • 17 Lammert F, Carey M C, Paigen B. Chromosomal organization of candidate genes involved in cholesterol gallstone formation: A murine gallstone map.  Gastroenterology. 2001;  120 221-238
  • 18 Fullerton S M, Clark A G, Weiss K M. et al . Apolipoprotein E variation at the sequence haplotype level: implications for the origin and maintenance of a major human polymorphism.  Am J Hum Genet. 2000;  67 881-900
  • 19 Bertomeu A, Ros E, Zambon D. et al . Apolipoprotein E polymorphism and gallstones.  Gastroenterology. 1996;  111 1603-1610
  • 20 Niemi M, Kervinen K, Rantala A. et al . The role of apolipoprotein E and glucose intolerance in gallstone disease in middle aged subjects.  Gut. 1999;  44 557-562
  • 21 Juvonen T, Kervinen K, Kairaluoma M I, Lajunen L H, Kesaniemi Y A. Gallstone cholesterol content is related to apolipoprotein E polymorphism.  Gastroenterology. 1993;  104 1806-1813
  • 22 Portincasa P, van Erpecum K J, van De Meeberg P C. et al . Apolipoprotein E4 genotype and gallbladder motility influence speed of gallstone clearance and risk of recurrence after extracorporeal shock-wave lithotripsy.  Hepatology. 1996;  24 580-587
  • 23 Venneman N G, van Berge-Henegouwen G P, Portincasa P. et al . Absence of apolipoprotein E4 genotypes, good gallbladder motility and presence of solitary stones delay rather than prevent gallstone recurrence after extracorporeal shock wave lithotripsy.  J Hepatol. 2001;  35 10-16
  • 24 Van Erpecum K J, Carey M C. Apolipoprotein E4: Another risk factor for cholesterol gallstone formation?.  Gastroenterology. 1996;  111 1764-1767
  • 25 Lin J P, Hanis C L, Boerwinkle E. Genetic epidemiology of gallbladder disease in Mexican-Americans and cholesterol 7α-hydroxylase gene variation.  Am J Hum Genet. 1994;  55 A48
  • 26 Tall A R, Jiang X, Luo Y, Silver D. Lipid transfer proteins, HDL metabolism, and atherogenesis.  Arterioscler Thromb Vasc Biol. 2000;  20 1185-1188
  • 27 Ordovas J M, Cupples L A, Corella D. et al . Association of cholesteryl ester transfer protein-TaqIB polymorphism with variations in lipoprotein subclasses and coronary heart disease risk: The Framingham study.  Arterioscler Thromb Vasc Biol. 2000;  20 1323-1329
  • 28 Juvonen T, Savolainen M J, Kairaluoma M I. et al . Polymorphisms at the apoB, apoA-I, and cholesteryl ester transfer protein gene loci in patients with gallbladder disease.  J Lipid Res. 1995;  36 804-812
  • 29 Han T, Jiang Z, Suo G, Zhang S. Apolipoprotein B-100 gene XbaI polymorphism and cholesterol gallstone disease.  Clin Genet. 2000;  57 304-308
  • 30 Thijs C, Knipschild P, Brombacher P. Serum lipids and gallstones: A case-control study.  Gastroenterology. 1990;  99 843-849
  • 31 Rosmorduc O, Hermelin B, Poupon R. MDR3 gene defect in adults with symptomatic intrahepatic and gallbladder cholesterol cholelithiasis.  Gastroenterology. 2001;  120 1459-1467
  • 32 Shoda J, Oda K, Suzuki H. et al . Etiologic significance of defects in cholesterol, phospholipid, and bile acid metabolism in the liver of patients with intrahepatic calculi.  Hepatology. 2001;  33 1194-1205
  • 33 Fracchia M, Pellegrino S, Secreto P. et al . Biliary lipid composition in cholesterol microlithiasis.  Gut. 2001;  48 702-706
  • 34 Jacquemin E, De Vree J M, Cresteil D. et al . The wide spectrum of multidrug resistance 3 deficiency: From neonatal cholestasis to cirrhosis of adulthood.  Gastroenterology. 2001;  120 1448-1458
  • 35 Bahar R J, Stolz A. Bile acid transport.  Gastroenterol Clin North Am. 1999;  28 27-58
  • 36 Lammert F, Marschall H U, Glantz A, Matern S. Intrahepatic cholestasis of pregnancy: Molecular pathogenesis, diagnosis and therapeutic management.  J Hepatol. 2000;  33 1012-1021
  • 37 Dawson P A, Montagnani M, Fusegawa H, Clarke G, Carey M C. Identification of a dysfunctional ileal bile acid transporter gene in a patient with pigment gallstones.  Hepatology. 2000;  32 434A
  • 38 Brink M A, Slors J F, Keulemans Y C. et al . Enterohepatic cycling of bilirubin: A putative mechanism for pigment gallstone formation in ileal Crohn’s disease.  Gastroenterology. 1999;  116 1420-1427
  • 39 Paigen K. A miracle enough: The power of mice.  Nature Med. 1995;  1 215-220
  • 40 Lander E S, Schork N J. Genetic dissection of complex traits.  Science. 1994;  265 2037-2048
  • 41 Wang D Q, Lammert F, Cohen D E, Paigen B, Carey M C. Cholic acid aids absorption, biliary secretion, and phase transitions of cholesterol in murine cholelithogenesis.  Am J Physiol. 1999;  276 G751-760
  • 42 Wang D Q, Paigen B, Carey M C. Phenotypic characterization of Lith genes that determine susceptibility to cholesterol cholelithiasis in inbred mice: Physical-chemistry of gallbladder bile.  J Lipid Res. 1997;  38 1395-1411
  • 43 Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps.  Genetics. 1989;  121 185-199
  • 44 Copeland N G, Jenkins N A, Gilbert D J. et al . A genetic linkage map of the mouse: Current applications and future prospects.  Science. 1993;  262 57-66
  • 45 Khanuja B, Cheah Y C, Hunt M. et al . Lith1, a major gene affecting cholesterol gallstone formation among inbred strains of mice.  Proc Natl Acad Sci USA. 1995;  92 7729-7733
  • 46 Paigen B, Schork N J, Svenson K L. et al . Quantitative trait loci mapping for cholesterol gallstones in AKR/J and C57L/J strains of mice.  Physiol Genomics. 2000;  4 59-65
  • 47 Markel P, Shu P, Ebeling C. et al . Theoretical and empirical issues for marker-assisted breeding of congenic mouse strains.  Nature Genet. 1997;  17 280-284
  • 48 Lammert F, Beier D R, Wang D Q. et al . Genetic mapping of hepatocanalicular transporters establishes Sister-P-glycoprotein (Spgp) as a candidate for the major gallstone gene (Lith1).  Hepatology. 1997;  26 358A
  • 49 Figge A, Taenzler B, Matern S, Lammert F. Molecular structure of the bile salt export pump gene (Abcb11) reveals a polymorphism between gallstone-susceptible and resistant inbred mice.  Gastroenterology. 2001;  120 A1
  • 50 Wang D Q, Lammert F, Paigen B, Carey M C. Phenotypic characterization of Lith genes that determine susceptibility to cholesterol cholelithiasis in inbred mice: pathophysiology of biliary lipid secretion.  J Lipid Res. 1999;  40 2066-2079
  • 51 Lammert F, Wang D Q, Paigen B, Carey M C. Phenotypic characterization of Lith genes that determine susceptibility to cholesterol cholelithiasis in inbred mice: Integrated activities of hepatic lipid regulatory enzymes.  J Lipid Res. 1999;  40 2080-2090
  • 52 Fuchs M, Lammert F, Wang D Q. et al . Sterol carrier protein 2 participates in hypersecretion of biliary cholesterol during gallstone formation in genetically gallstone-susceptible mice.  Biochem J. 1998;  336 33-37
  • 53 Fuchs M, Ivandic B, Muller O. et al . Biliary cholesterol hypersecretion in gallstone-susceptible mice is associated with hepatic up-regulation of the high-density lipoprotein receptor SRBI.  Hepatology. 2001;  33 1451-1459
  • 54 Roda E, Mazzella G, Roda A. et al .Effect of chenodeoxycholic acid and ursodeoxycholic acid administration on biliary lipid secretion in normal weight and obese gallstone patients. Paumgartner G, Stiehl A, Gerok W Bile acids and lipids Lancaster; MTP 1981: 189-193
  • 55 Shaffer E A, Small D M. Biliary lipid secretion in cholesterol gallstone disease. The effect of cholecystectomy and obesity.  J Clin Invest. 1977;  59 828-840
  • 56 Bennion L J, Grundy S M. Effects of obesity and caloric intake on biliary lipid metabolism in man.  J Clin Invest. 1975;  56 996-1011
  • 57 Bouchard G, Paigen B, Carey M C. Functional and gentic studies of Abcc2 in inbred mice: Evidence for a primary role of the canalicular conjugate organic anion transporter in Lith2-transmitted cholesterol gallstone susceptibility. Gerbes AL, Beuers U, Jüngst D, Pape GR, Sackmann M, Sauerbruch T Hepatology 2000. Symposium in honour of Gustav Paumgartner Dordrecht; Kluwer Academic Publishers 2001: 97-101
  • 58 Verkade H J, Wolters H, Gerding A. et al . Mechanism of biliary lipid secretion in the rat: A role for bile acid-independent bile flow?.  Hepatology. 1993;  17 1074-1080
  • 59 Lammert F, Wang D Q, Wittenburg H. et al . Lith genes with independent loci for gallstone formation and mucin accumulation in A/J and AKR/J inbred mouse strains.  Hepatology. 2002;  (im Druck)
  • 60 Zeisel S H, da Costa K A, Franklin P D. et al . Choline, an essential nutrient for humans.  FASEB J. 1991;  5 2093-2098
  • 61 Green R M, Hoda F, Ward K L. Molecular cloning and characterization of the murine bile salt export pump.  Gene. 2000;  241 117-123
  • 62 Wittenburg H, Lammert F, Wang D Q. et al . Interacting susceptibility loci for cholesterol gallstones and gallbladder mucin in AKR and SWR strains of mice.  Physiol Genomics. 2002;  8 67-77
  • 63 Angel T A, Faust C J, Gonzales J C. et al . Genetic mapping of the X-linked dominant mutations striated (Str) and bare patches (Bpa) to a 600-kb region of the mouse X chromosome: Implications for mapping human disorders in Xq28.  Mamm Genome. 1993;  4 171-176
  • 64 York B, Lei K, West D B. Inherited non-autosomal effects on body fat in F2 mice derived from an AKR/J × SWR/J cross.  Mamm Genome. 1997;  8 726-730
  • 65 Diehl A K. Epidemiology and natural history of gallstone disease.  Gastroenterol Clin North Am. 1991;  20 1-19
  • 66 Brown M S, Goldstein J L. The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor.  Cell. 1997;  89 331-340
  • 67 Donner C, Choi S, Komaromy M, Cooper A D. Accelerated lipoprotein uptake by transplantable hepatomas that express hepatic lipase.  J Lipid Res. 1998;  39 1805-1815
  • 68 Amigo L, Quinones V, Mardones P. et al . Impaired biliary cholesterol secretion and decreased gallstone formation in apolipoprotein E-deficient mice fed a high-cholesterol diet.  Gastroenterology. 2000;  118 772-779
  • 69 Schwartz C C, Halloran L G, Vlahcevic Z R, Gregory D H, Swell L. Preferential utilization of free cholesterol from high-density lipoproteins for biliary cholesterol secretion in man.  Science. 1978;  200 62-64
  • 70 Machleder D, Ivandic B, Welch C. et al . Complex genetic control of HDL levels in mice in response to an atherogenic diet. Coordinate regulation of HDL levels and bile acid metabolism.  J Clin Invest. 1997;  99 1406-1419
  • 71 Welch C L, Xia Y R, Gu L J. et al . Srb1 maps to mouse chromosome 5 in a region harboring putative QTLs for plasma lipoprotein levels.  Mamm Genome. 1997;  8 942-944
  • 72 Samuelson L C, Isakoff M S, Lacourse K A. Localization of the murine cholecystokinin A and B receptor genes.  Mamm Genome. 1995;  6 242-246
  • 73 Kozarsky K F, Donahee M H, Rigotti A. et al . Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels.  Nature. 1997;  387 414-417
  • 74 Mardones P, Quinones V, Amigo L. et al . Hepatic cholesterol and bile acid metabolism and intestinal cholesterol absorption in scavenger receptor class B type I-deficient mice.  J Lipid Res. 2001;  42 170-180
  • 75 Jørgensen T. Gallstones and plasma lipids in a Danish population.  Scand J Gastroenterol. 1989;  24 916-922
  • 76 Scragg R K, Calvert G D, Oliver J R. Plasma lipids and insulin in gallstone disease: A case-control study.  Br Med J. 1984;  289 521-525
  • 77 Sehayek E, Shefer S, Nguyen L B. et al . Apolipoprotein E regulates dietary cholesterol absorption and biliary cholesterol excretion: Studies in C57BL/6 apolipoprotein E knockout mice.  Proc Natl Acad Sci USA. 2000;  97 3433-3437
  • 78 Buhman K K, Accad M, Novak S. et al . Resistance to diet-induced hypercholesterolemia and gallstone formation in ACAT2-deficient mice.  Nature Med. 2000;  6 1341-1347
  • 79 Duggan D J, Bittner M, Chen Y, Meltzer P, Trent J M. Expression profiling using cDNA microarrays.  Nature Genet. 1999;  21 S10-S14
  • 80 Acton S, Rigotti A, Landschulz K T. et al . Identification of scavenger receptor SR-BI as a high density lipoprotein receptor.  Science. 1996;  271 518-520
  • 81 Loria P, Bozzoli M, Concari M. et al . Effect of taurohyodeoxycholic acid on biliary lipid secretion in humans.  Hepatology. 1997;  25 1306-1314
  • 82 Dusserre J P, Montet A M, Montet J C. Effect of hyocholic acid on the prevention and dissolution of biliary cholesterol crystals in mice.  Can J Physiol Pharmacol. 1988;  66 1028-1034
  • 83 Song C, Hiipakka R A, Liao S. Selective activation of liver X receptor alpha by 6alpha-hydroxy bile acids and analogs.  Steroids. 2000;  65 423-427
  • 84 Wietholtz H, Marschall H U, Sjovall J, Matern S. Stimulation of bile acid 6alpha-hydroxylation by rifampin.  J Hepatol. 1996;  24 713-718
  • 85 Lammert F, Bock H H. Nuclear xeno-sensors as receptors for cholestatic bile acids: the second line of defense.  Hepatology. 2002;  35 232-234
  • 86 Rollan A, Loyola G, Covarrubias C. et al . Apolipoprotein E polymorphism in patients with acute pancreatitis.  Pancreas. 1994;  9 349-353

4 Ein QTL erhält einen Namen, wenn der LOD-Score > 3,3-4,3 ist, was einem p < 0,0001 entspricht. Der LOD-Score ist der Logarithmus des Verhältnisses der Wahrscheinlichkeit, die experimentellen Daten bei genetischer Kopplung zu beobachten, und der Wahrscheinlichkeit, die Daten zufällig zu beobachten.

4

Priv.-Doz. Dr. Frank Lammert

Medizinische Klinik III, Universitätsklinikum der RWTH Aachen

Pauwelsstraße 30

52057 Aachen

Email: flammert@ukaachen.de