Zusammenfassung
Die Cholesterin-Cholelithiasis, eine der verbreitetsten
gastroenterologischen Erkrankungen in westlichen Ländern, ist eine
polygene Erkrankung, die aus einer gestörten biliären
Cholesterinhomöostase resultiert. Durch Assoziationsstudien zwischen
Gallensteinphänotypen und einzelnen Genen konnten bisher sechs humane
Gallensteinkandidatengene identifiziert werden. Polymorphismen in den Genen der
Apolipoproteine B und E, der Phospholipid-Flippase (ABCB4), des Cholesterinester-Transferproteins (CETP), der Cholesterin-7α-Hydroxylase (CYP7A1) und des ilealen Gallensäurentransporters (SLC10A2) korrelieren mit dem Auftreten von Gallensteinen.
Die Quantitative Trait-Locus-(QTL-)Analyse erlaubt die Lokalisation weiterer
unbekannter Gallensteingene in Inzuchtmäusen. Durch die unterschiedliche
Gallensteinprädisposition verschiedener Inzuchtstämme konnten 5
lithogene (Lith-)Loci identifiziert werden. Als
attraktive Kandidatengene wurden hepatobiliäre Lipidtransportproteine wie
die Gallensäurenexportpumpe (Abcb11) und
Schlüsselenzyme des Lipoproteinstoffwechsels wie die hepatische Lipase
(Lipc) etabliert. Der rasche Fortschritt der
Genomprojekte bildet die Grundlage zur Analyse der orthologen
LITH-Gene bei Gallensteinpatienten, die neue
Ansätze für eine patientenbezogene Risikoabschätzung und
pharmakologische Präventionsstrategien eröffnen könnte.
Abstract
Cholesterol cholelithiasis is one of the most common
gastroenterological diseases in Western countries. It is a polygenic disease
resulting from disturbed biliary cholesterol homeostasis. Association studies
identified six human gallstone candidate genes. Polymorphisms in the genes
encoding the apolipoproteins B and E, phospholipid flippase (ABCB4), cholesterol ester transfer protein (CETP), cholesterol-7α-hydroxylase (CYP7A1) and ileal bile acid transporter (SLC10A2) are correlated with gallstone prevalence.
Quantitative Trait Locus (QTL) analysis localises additional unknown gallstone
genes in inbred mice. Based on the natural variation of cholesterol gallstone
susceptibility among different inbred strains, 5 lithogenic (Lith) loci have been identified. Hepatobiliary
transporters (e. g. bile salt export pump Abcb11) and key proteins of the lipoprotein metabolism
(e. g. hepatic lipase Lipc) could be
established as creedal candidate genes for Lith loci.
The rapid progress of mouse and human genome projects provides the basis for
the analysis of orthologous human LITH genes in
gallstone patients, which might offer new prospects for individual risk
assessment and molecular targets for stone prevention.
Schlüsselwörter
Cholesteringallensteine - Polygene
Erkrankung - Assoziationsstudien - Kandidatengene - Quantitative
Trait-Locus-Analyse - Inzuchtmäuse - Murine
Gallensteinkarte -
Lith-Locus - Gallensteinprävention
Keywords
Cholesterol Gallstones - Polygenic
Disease - Asscociation Studies - Candidate
Genes - Quantitative Trait Locus Analysis - Inbred
Mice - Murine Gallstone Map -
Lith
Locus - Primary Prevention
Literatur
-
1 Matern S. Cholelithiasis. Gerok W, Blum
HE Hepatologie München; Urban &
Schwarzenberg 1995: 565-596
-
2 Gerste B. Operationshäufigkeit in Krankenhäusern 1996 bis
1999. Arnold M, Litsch M, Schellschmidt
H Krankenhaus-Report
2000 Stuttgart; Schattauer 2001: 415-424
-
3
LaMont J T, Carey M C.
Cholesterol gallstone formation. 2. Pathobiology and
pathomechanics.
Prog Liver
Dis.
1992;
10
165-191
-
4
Paumgartner G, Sauerbruch T.
Gallstones:
Pathogenesis.
Lancet.
1991;
338
1117-1121
-
5
Apstein M D, Carey M C.
Pathogenesis of cholesterol gallstones: A parsimonious
hypothesis.
Eur J Clin
Invest.
1996;
26
343-352
-
6
Busch N, Matern S.
Current concepts in cholesterol gallstone
pathogenesis.
Eur J Clin
Invest.
1991;
21
453-460
-
7
Burkitt D P, Tunstall M.
Gallstones: Geographical and chronological
features.
J Trop Med
Hyg.
1975;
78
140-144
-
8
Brett M, Barker D J.
The world distribution of gallstones.
Int J
Epidemiol.
1976;
5
335-341
-
9
Maclure K M, Hayes K C, Colditz G A. et al .
Weight, diet, and the risk of symptomatic gallstones in
middle-aged women.
N Engl J
Med.
1989;
321
563-569
-
10
Attili A F, Scafato E, Marchioli R, Marfisi R M, Festi D.
Diet and gallstones in Italy: The cross-sectional MICOL
results.
Hepatology.
1998;
27
1492-1498
-
11
Sampliner R E, Bennett P H, Comess L J, Rose F A, Burch T A.
Gallbladder disease in pima indians. Demonstration of high
prevalence and early onset by cholecystography.
N Engl J
Med.
1970;
283
1358-1364
-
12
Reid J M, Fullmer S D, Pettigrew K D. et al .
Nutrient intake of Pima Indian women: Relationships to
diabetes mellitus and gallbladder disease.
Am J Clin
Nutr.
1971;
24
1281-1289
-
13
Van der Linden W.
Genetic factors in gallstone disease.
Clin
Gastroenterol.
1973;
2
603-614
-
14
Kesäniemi Y A, Koskenvuo M, Vuoristo M, Miettinen T A.
Biliary lipid composition in monozygotic and dizygotic pairs
of
twins.
Gut.
1989;
30
1750-1756
-
15
Kratzer W, Kron M, Hay B, Pfeiffer M M, Kachele V.
Prävalenz der Cholezystolithiasis in Süddeutschland
- eine sonographische Untersuchung an 2498 Personen einer ländlichen
Bevölkerung.
Z
Gastroenterol.
1999;
37
1157-1162
-
16
Attili A F, Capocaccia R, Carulli N. et al .
Factors associated with gallstone disease in the MICOL
experience. Multicenter Italian Study on Epidemiology of
Cholelithiasis.
Hepatology.
1997;
26
809-818
-
17
Lammert F, Carey M C, Paigen B.
Chromosomal organization of candidate genes involved in
cholesterol gallstone formation: A murine gallstone
map.
Gastroenterology.
2001;
120
221-238
-
18
Fullerton S M, Clark A G, Weiss K M. et al .
Apolipoprotein E variation at the sequence haplotype level:
implications for the origin and maintenance of a major human
polymorphism.
Am J Hum
Genet.
2000;
67
881-900
-
19
Bertomeu A, Ros E, Zambon D. et al .
Apolipoprotein E polymorphism and
gallstones.
Gastroenterology.
1996;
111
1603-1610
-
20
Niemi M, Kervinen K, Rantala A. et al .
The role of apolipoprotein E and glucose intolerance in
gallstone disease in middle aged
subjects.
Gut.
1999;
44
557-562
-
21
Juvonen T, Kervinen K, Kairaluoma M I, Lajunen L H, Kesaniemi Y A.
Gallstone cholesterol content is related to apolipoprotein E
polymorphism.
Gastroenterology.
1993;
104
1806-1813
-
22
Portincasa P, van
Erpecum K J, van De
Meeberg P C. et al .
Apolipoprotein E4 genotype and gallbladder motility influence
speed of gallstone clearance and risk of recurrence after extracorporeal
shock-wave
lithotripsy.
Hepatology.
1996;
24
580-587
-
23
Venneman N G, van
Berge-Henegouwen G P, Portincasa P. et al .
Absence of apolipoprotein E4 genotypes, good gallbladder
motility and presence of solitary stones delay rather than prevent gallstone
recurrence after extracorporeal shock wave lithotripsy.
J
Hepatol.
2001;
35
10-16
-
24
Van
Erpecum K J, Carey M C.
Apolipoprotein E4: Another risk factor for cholesterol
gallstone
formation?.
Gastroenterology.
1996;
111
1764-1767
-
25
Lin J P, Hanis C L, Boerwinkle E.
Genetic epidemiology of gallbladder disease in
Mexican-Americans and cholesterol 7α-hydroxylase gene
variation.
Am J Hum
Genet.
1994;
55
A48
-
26
Tall A R, Jiang X, Luo Y, Silver D.
Lipid transfer proteins, HDL metabolism, and
atherogenesis.
Arterioscler Thromb Vasc
Biol.
2000;
20
1185-1188
-
27
Ordovas J M, Cupples L A, Corella D. et al .
Association of cholesteryl ester transfer protein-TaqIB
polymorphism with variations in lipoprotein subclasses and coronary heart
disease risk: The Framingham study.
Arterioscler Thromb Vasc
Biol.
2000;
20
1323-1329
-
28
Juvonen T, Savolainen M J, Kairaluoma M I. et al .
Polymorphisms at the apoB, apoA-I, and cholesteryl ester
transfer protein gene loci in patients with gallbladder
disease.
J Lipid
Res.
1995;
36
804-812
-
29
Han T, Jiang Z, Suo G, Zhang S.
Apolipoprotein B-100 gene XbaI polymorphism and cholesterol
gallstone disease.
Clin
Genet.
2000;
57
304-308
-
30
Thijs C, Knipschild P, Brombacher P.
Serum lipids and gallstones: A case-control
study.
Gastroenterology.
1990;
99
843-849
-
31
Rosmorduc O, Hermelin B, Poupon R.
MDR3 gene defect in adults with symptomatic intrahepatic and
gallbladder cholesterol
cholelithiasis.
Gastroenterology.
2001;
120
1459-1467
-
32
Shoda J, Oda K, Suzuki H. et al .
Etiologic significance of defects in cholesterol,
phospholipid, and bile acid metabolism in the liver of patients with
intrahepatic
calculi.
Hepatology.
2001;
33
1194-1205
-
33
Fracchia M, Pellegrino S, Secreto P. et al .
Biliary lipid composition in cholesterol
microlithiasis.
Gut.
2001;
48
702-706
-
34
Jacquemin E, De
Vree J M, Cresteil D. et al .
The wide spectrum of multidrug resistance 3 deficiency: From
neonatal cholestasis to cirrhosis of
adulthood.
Gastroenterology.
2001;
120
1448-1458
-
35
Bahar R J, Stolz A.
Bile acid transport.
Gastroenterol Clin North
Am.
1999;
28
27-58
-
36
Lammert F, Marschall H U, Glantz A, Matern S.
Intrahepatic cholestasis of pregnancy: Molecular
pathogenesis, diagnosis and therapeutic management.
J
Hepatol.
2000;
33
1012-1021
-
37
Dawson P A, Montagnani M, Fusegawa H, Clarke G, Carey M C.
Identification of a dysfunctional ileal bile acid transporter
gene in a patient with pigment
gallstones.
Hepatology.
2000;
32
434A
-
38
Brink M A, Slors J F, Keulemans Y C. et al .
Enterohepatic cycling of bilirubin: A putative mechanism for
pigment gallstone formation in ileal Crohn’s
disease.
Gastroenterology.
1999;
116
1420-1427
-
39
Paigen K.
A miracle enough: The power of mice.
Nature
Med.
1995;
1
215-220
-
40
Lander E S, Schork N J.
Genetic dissection of complex
traits.
Science.
1994;
265
2037-2048
-
41
Wang D Q, Lammert F, Cohen D E, Paigen B, Carey M C.
Cholic acid aids absorption, biliary secretion, and phase
transitions of cholesterol in murine cholelithogenesis.
Am J
Physiol.
1999;
276
G751-760
-
42
Wang D Q, Paigen B, Carey M C.
Phenotypic characterization of Lith genes that determine
susceptibility to cholesterol cholelithiasis in inbred mice: Physical-chemistry
of gallbladder bile.
J Lipid
Res.
1997;
38
1395-1411
-
43
Lander E S, Botstein D.
Mapping mendelian factors underlying quantitative traits
using RFLP linkage
maps.
Genetics.
1989;
121
185-199
-
44
Copeland N G, Jenkins N A, Gilbert D J. et al .
A genetic linkage map of the mouse: Current applications and
future
prospects.
Science.
1993;
262
57-66
-
45
Khanuja B, Cheah Y C, Hunt M. et al .
Lith1, a major gene affecting cholesterol gallstone formation
among inbred strains of mice.
Proc Natl Acad Sci
USA.
1995;
92
7729-7733
-
46
Paigen B, Schork N J, Svenson K L. et al .
Quantitative trait loci mapping for cholesterol gallstones in
AKR/J and C57L/J strains of mice.
Physiol
Genomics.
2000;
4
59-65
-
47
Markel P, Shu P, Ebeling C. et al .
Theoretical and empirical issues for marker-assisted breeding
of congenic mouse strains.
Nature
Genet.
1997;
17
280-284
-
48
Lammert F, Beier D R, Wang D Q. et al .
Genetic mapping of hepatocanalicular transporters establishes
Sister-P-glycoprotein (Spgp) as a candidate for the major gallstone gene
(Lith1).
Hepatology.
1997;
26
358A
-
49
Figge A, Taenzler B, Matern S, Lammert F.
Molecular structure of the bile salt export pump gene
(Abcb11) reveals a polymorphism between gallstone-susceptible and resistant
inbred
mice.
Gastroenterology.
2001;
120
A1
-
50
Wang D Q, Lammert F, Paigen B, Carey M C.
Phenotypic characterization of Lith genes that determine
susceptibility to cholesterol cholelithiasis in inbred mice: pathophysiology of
biliary lipid secretion.
J Lipid
Res.
1999;
40
2066-2079
-
51
Lammert F, Wang D Q, Paigen B, Carey M C.
Phenotypic characterization of Lith genes that determine
susceptibility to cholesterol cholelithiasis in inbred mice: Integrated
activities of hepatic lipid regulatory enzymes.
J Lipid
Res.
1999;
40
2080-2090
-
52
Fuchs M, Lammert F, Wang D Q. et al .
Sterol carrier protein 2 participates in hypersecretion of
biliary cholesterol during gallstone formation in genetically
gallstone-susceptible mice.
Biochem
J.
1998;
336
33-37
-
53
Fuchs M, Ivandic B, Muller O. et al .
Biliary cholesterol hypersecretion in gallstone-susceptible
mice is associated with hepatic up-regulation of the high-density lipoprotein
receptor
SRBI.
Hepatology.
2001;
33
1451-1459
-
54 Roda E, Mazzella G, Roda A. et al .Effect of chenodeoxycholic acid and ursodeoxycholic acid
administration on biliary lipid secretion in normal weight and obese gallstone
patients. Paumgartner G, Stiehl A, Gerok W Bile acids and
lipids Lancaster; MTP 1981: 189-193
-
55
Shaffer E A, Small D M.
Biliary lipid secretion in cholesterol gallstone disease. The
effect of cholecystectomy and obesity.
J Clin
Invest.
1977;
59
828-840
-
56
Bennion L J, Grundy S M.
Effects of obesity and caloric intake on biliary lipid
metabolism in man.
J Clin
Invest.
1975;
56
996-1011
-
57 Bouchard G, Paigen B, Carey M C. Functional and gentic studies of Abcc2 in inbred mice:
Evidence for a primary role of the canalicular conjugate organic anion
transporter in Lith2-transmitted cholesterol gallstone
susceptibility. Gerbes AL, Beuers U, Jüngst D, Pape GR, Sackmann
M, Sauerbruch T Hepatology 2000. Symposium in honour of Gustav
Paumgartner Dordrecht; Kluwer Academic
Publishers 2001: 97-101
-
58
Verkade H J, Wolters H, Gerding A. et al .
Mechanism of biliary lipid secretion in the rat: A role for
bile acid-independent bile
flow?.
Hepatology.
1993;
17
1074-1080
-
59
Lammert F, Wang D Q, Wittenburg H. et al .
Lith genes with independent loci for gallstone formation and
mucin accumulation in A/J and AKR/J inbred mouse
strains.
Hepatology.
2002;
(im
Druck)
-
60
Zeisel S H, da
Costa K A, Franklin P D. et al .
Choline, an essential nutrient for humans.
FASEB
J.
1991;
5
2093-2098
-
61
Green R M, Hoda F, Ward K L.
Molecular cloning and characterization of the murine bile
salt export
pump.
Gene.
2000;
241
117-123
-
62
Wittenburg H, Lammert F, Wang D Q. et al .
Interacting susceptibility loci for cholesterol gallstones
and gallbladder mucin in AKR and SWR strains of mice.
Physiol
Genomics.
2002;
8
67-77
-
63
Angel T A, Faust C J, Gonzales J C. et al .
Genetic mapping of the X-linked dominant mutations striated
(Str) and bare patches (Bpa) to a 600-kb region of the mouse X chromosome:
Implications for mapping human disorders in Xq28.
Mamm
Genome.
1993;
4
171-176
-
64
York B, Lei K, West D B.
Inherited non-autosomal effects on body fat in F2 mice
derived from an AKR/J × SWR/J cross.
Mamm
Genome.
1997;
8
726-730
-
65
Diehl A K.
Epidemiology and natural history of gallstone
disease.
Gastroenterol Clin North
Am.
1991;
20
1-19
-
66
Brown M S, Goldstein J L.
The SREBP pathway: Regulation of cholesterol metabolism by
proteolysis of a membrane-bound transcription
factor.
Cell.
1997;
89
331-340
-
67
Donner C, Choi S, Komaromy M, Cooper A D.
Accelerated lipoprotein uptake by transplantable hepatomas
that express hepatic lipase.
J Lipid
Res.
1998;
39
1805-1815
-
68
Amigo L, Quinones V, Mardones P. et al .
Impaired biliary cholesterol secretion and decreased
gallstone formation in apolipoprotein E-deficient mice fed a high-cholesterol
diet.
Gastroenterology.
2000;
118
772-779
-
69
Schwartz C C, Halloran L G, Vlahcevic Z R, Gregory D H, Swell L.
Preferential utilization of free cholesterol from
high-density lipoproteins for biliary cholesterol secretion in
man.
Science.
1978;
200
62-64
-
70
Machleder D, Ivandic B, Welch C. et al .
Complex genetic control of HDL levels in mice in response to
an atherogenic diet. Coordinate regulation of HDL levels and bile acid
metabolism.
J Clin
Invest.
1997;
99
1406-1419
-
71
Welch C L, Xia Y R, Gu L J. et al .
Srb1 maps to mouse chromosome 5 in a region harboring
putative QTLs for plasma lipoprotein levels.
Mamm
Genome.
1997;
8
942-944
-
72
Samuelson L C, Isakoff M S, Lacourse K A.
Localization of the murine cholecystokinin A and B receptor
genes.
Mamm
Genome.
1995;
6
242-246
-
73
Kozarsky K F, Donahee M H, Rigotti A. et al .
Overexpression of the HDL receptor SR-BI alters plasma HDL
and bile cholesterol
levels.
Nature.
1997;
387
414-417
-
74
Mardones P, Quinones V, Amigo L. et al .
Hepatic cholesterol and bile acid metabolism and intestinal
cholesterol absorption in scavenger receptor class B type I-deficient
mice.
J Lipid
Res.
2001;
42
170-180
-
75
Jørgensen T.
Gallstones and plasma lipids in a Danish
population.
Scand J
Gastroenterol.
1989;
24
916-922
-
76
Scragg R K, Calvert G D, Oliver J R.
Plasma lipids and insulin in gallstone disease: A
case-control study.
Br Med
J.
1984;
289
521-525
-
77
Sehayek E, Shefer S, Nguyen L B. et al .
Apolipoprotein E regulates dietary cholesterol absorption and
biliary cholesterol excretion: Studies in C57BL/6 apolipoprotein E knockout
mice.
Proc Natl Acad Sci
USA.
2000;
97
3433-3437
-
78
Buhman K K, Accad M, Novak S. et al .
Resistance to diet-induced hypercholesterolemia and gallstone
formation in ACAT2-deficient mice.
Nature
Med.
2000;
6
1341-1347
-
79
Duggan D J, Bittner M, Chen Y, Meltzer P, Trent J M.
Expression profiling using cDNA microarrays.
Nature
Genet.
1999;
21
S10-S14
-
80
Acton S, Rigotti A, Landschulz K T. et al .
Identification of scavenger receptor SR-BI as a high density
lipoprotein
receptor.
Science.
1996;
271
518-520
-
81
Loria P, Bozzoli M, Concari M. et al .
Effect of taurohyodeoxycholic acid on biliary lipid secretion
in
humans.
Hepatology.
1997;
25
1306-1314
-
82
Dusserre J P, Montet A M, Montet J C.
Effect of hyocholic acid on the prevention and dissolution of
biliary cholesterol crystals in mice.
Can J Physiol
Pharmacol.
1988;
66
1028-1034
-
83
Song C, Hiipakka R A, Liao S.
Selective activation of liver X receptor alpha by
6alpha-hydroxy bile acids and
analogs.
Steroids.
2000;
65
423-427
-
84
Wietholtz H, Marschall H U, Sjovall J, Matern S.
Stimulation of bile acid 6alpha-hydroxylation by
rifampin.
J
Hepatol.
1996;
24
713-718
-
85
Lammert F, Bock H H.
Nuclear xeno-sensors as receptors for cholestatic bile acids:
the second line of
defense.
Hepatology.
2002;
35
232-234
-
86
Rollan A, Loyola G, Covarrubias C. et al .
Apolipoprotein E polymorphism in patients with acute
pancreatitis.
Pancreas.
1994;
9
349-353
4 Ein QTL erhält einen Namen, wenn der LOD-Score
> 3,3-4,3 ist, was einem p
< 0,0001 entspricht. Der LOD-Score ist der Logarithmus des
Verhältnisses der Wahrscheinlichkeit, die experimentellen Daten bei
genetischer Kopplung zu beobachten, und der Wahrscheinlichkeit, die Daten
zufällig zu beobachten.
4
Priv.-Doz. Dr. Frank Lammert
Medizinische Klinik III, Universitätsklinikum der RWTH
Aachen
Pauwelsstraße 30
52057 Aachen
Email: flammert@ukaachen.de