Planta Med 2002; 68(6): 497-500
DOI: 10.1055/s-2002-32556
Original Paper
Pharmacology
© Georg Thieme Verlag Stuttgart · New York

Ginsenosides from Panax ginseng Differentially Regulate Lymphocyte Proliferation

Jae Youl Cho1, 2 , Ae Ra Kim3 , Eun Sook Yoo2, 4 , Kyong Up Baik2 , Myung Hwan Park2
  • 1Department of Immunology and Molecular Pathology, Windeyer Institute of Medical Sciences, University College London Medical School, London, UK
  • 2Department of Immunopharmacology, R & D center, Daewoong Pharmaceutical Co., Korea
  • 3College of Pharmacy, Pusan National University, Korea
  • 4Department of Pharmacology, Cheju National University Medical School, Korea
Further Information

Publication History

August 7, 2001

December 29, 2001

Publication Date:
01 July 2002 (online)

Abstract

We have examined the immunosuppressive effects of representative ginsenosides (Rb1, Rb2, Re and Rg1) from Panax ginseng C. A. Meyer on CD4+ and CD8+ lymphocyte proliferation. Ginsenosides differentially modulated lymphocyte proliferation induced by concanavalin A (Con A), lipopolysaccharide (LPS), phytohemaglutinin (PHA) and interleukin-2 (IL-2). Thus, Rb1 and Re significantly enhanced Con A-induced lymphocyte proliferation, whereas Rg1 did not affect the proliferation. Interestingly, however, Rb2 strongly blocked Con A, LPS and PHA-induced lymphocyte proliferation with the IC50 values of 21.8, 29.0 and 24.0 μM, respectively. Moreover, Rb2 inhibited Con A-stimulated IL-2 production with an IC50 of 13.3 μM. In the IL-2-stimulated CD8+ T cell (CTLL-2) proliferation assay, Re and Rg1 showed strong suppressive effects with IC50 values of 57.5 and 64.7 μM, respectively. In contrast, neither Rb1 nor Rb2 did inhibit CTLL-2 cell proliferation at tested concentrations. These results suggest that ginsenosides from P. ginseng may modulate lymphocyte proliferation in a different manner.

References

  • 1 Panayi G S, Lanchbury J S, Kingsley G H. The importance of the T-cell in initiating and maintaining the chronic synovitis of rheumatoid arthritis.  Arth Rheumatol. 1992;  35 729-35
  • 2 Correll P H, Iwama A, Tondat S, Mayrhofer G, Suda T, Bernstein A. Deregulated inflammatory response in mice lacking the STK/RON receptor tyrosine kinase.  Genes Funct. 1997;  1 69-83
  • 3 Murphy K M. T lymphocyte differentiation in the periphery.  Curr Opin Immunol. 1998;  10 226-32
  • 4 Weinstein S L, Sanghera J S, Lemke K, DeFranco A, Pelech C L. Bacterial lipopolysaccharide induces tyrosine phosphorylation and activation of mitogen-activated protein kinases in macrophages.  J Biol Chem. 1992;  267 14 955-62
  • 5 Geng Y, Marier R, Lotz M. Tyrosine kinases are involved with the expression of inducible nitric oxide synthase in human articular chondrocytes.  J Cell Physiol. 1995;  163 545-54
  • 6 Gillis C N. Panax ginseng pharmacology: a nitric oxide link?.  Biochem Pharmacol. 1997;  54 1-8
  • 7 Matsuda H, Samukawa K, Kubo M. Anti-inflammatory activity of ginsenoside Ro.  Planta Med. 1989;  56 19-23
  • 8 Kenarova B, Neychev H, Hadjiivanova C, Petkov V D. Immunomodulationg activity of ginsenoside Rg1 from Panax ginseng .  Jpn J Pharmacol. 1990;  54 447-54
  • 9 Mochizuki M, Yoo Y C, Matsuzawa K, Sato K, Saiki I, Tono-oka S. et al . et alInhibitory effect of tumor metastasis in mice by saponins, ginsenoside-Rb2, 20(R)- and 20(S)-ginsenoside-Rg3, of red ginseng.  Biol Pharm Bull. 1995;  18 1197-202
  • 10 Cho J Y, Park J, Yoo E S, Baik K U, Park M H. Effect of ginseng saponin on tumor necrosis factor-α production and T cell proliferation.  Yakhak Hoeji. 1998;  43 296-301
  • 11 Cho J Y, Yoo E S, Baik K U, Park M H. Han BH. In vitro inhibitory effect of protopanaxadiol ginsenosides on tumor necrosis factor (TNF)-α production and its modulation by known TNF-α antagonists.  Planta Med. 2001;  67 213-8
  • 12 Cho J Y, Kim P S, Park J, Chae S H, Yoo E S, Baik K U. et al . Immunomodulatory effect of arctigenin on TNF-α  and NO production, and lymphocyte proliferation.  J Pharm Pharmacol. 1999;  51 1267-73
  • 13 Sekut L, Connolly K M. Pathophysiology and regulation of TNF-α in inflammation.  Drug News Perspect. 1996;  9 261-9
  • 14 Cho J Y, Baik K U, Yoshikawa K, Park M H. In vitro anti-inflammatory effects of woorenosides from the rhizomes of Coptis japonica var. dissecta.  J Nat Prod. 2000;  63 1205-9
  • 15 Cho J Y, Kim A R, Park J S, Yoo E S, Park M H. Lignans from Coptis japonica differentially acts as anti-inflammatory principles.  Planta Med. 2001;  67 312-6
  • 16 Cho J Y, Kim P S, Park J, Chae S, Yoo E S, Baik K U. et al . Savinin a lignan from Pterocarpus santalinus as an active anti-inflammatory principle.  Biol Pharm Bull. 2001;  24 167-71
  • 17 Cho J Y, Yoo E S, Baik K U, Jung J H, Hong S Y, Park M H. In vitro anti-inflammatory effects of cynaropicrin, a sesquiterpene lactone, from Saussurea lappa .  Eur J Pharmacol. 2000;  398 399-407
  • 18 Waldmann T, Tagaya Y, Bamford R. Interleukin-2, interleukin-15, and their receptors.  Int Rev Immunol. 1998;  16 205-26
  • 19 Sinha B, Semmler J, Eisenhut T, Eigler A, Endres S. Enhanced tumor necrosis factor suppression and cyclic adenosine monophosphate accumulation by combination of phosphodiesterase inhibitors and prostanoids.  Eur J Immunol. 1996;  25 147-53
  • 20 Nikaido T, Ohmoto T, Sankawa U, Tanaka O, Kasai R, Shoji J. et al . Inhibition of cyclic AMP phosphodiesterase in Panax ginseng C. A. Meyer and Panax japonicus C. A. Meyer.  Chem Pharm Bull. 1984;  32 1477-83
  • 21 Plohmann B, Bader G, Hiller K, Franz G. Immunomodulatory and antitumoral effects of triterpenoid saponins.  Pharmazie. 1997;  52 953-7

Dr. Jae Youl Cho

Department of Pathology, Box 8118

Washington University School of Medicine


660 S. Euclid, St. Louis, MO 63110-1093

USA

Email: jaecho@pathbox.wustl.edu

Fax: +1-314-747-4888