References
1
Carreño MC.
Chem. Rev.
1995,
95:
1717
2a
Pezet F.
Aït-Haddou H.
Daran J.-C.
Sasaki I.
Balavoine GGA.
Chem. Commun.
2002,
510
2b
Hiroi K.
Suzuki Y.
Abe I.
Kawagishi R.
Tetrahedron
2000,
56:
4701
2c
Tokunoh R.
Sodeoka M.
Aoe K.-I.
Shibasaki M.
Tetrahedron Lett.
1995,
36:
8035
Examples of biologically active sulfoxides:
3a RP 73163: Pitchen P.
Chem. Ind. (London)
1994,
16:
636
3b Pantoprazole: Tanaka M.
Yamazaki H.
Hakusui H.
Nakamichi N.
Sekino H.
Chirality
1997,
9:
17
3c Ustiloxine: Hutton CA.
White JM.
Tetrahedron Lett.
1997,
38:
1643
3d OPC-29030: Morita S.
Matsubara J.
Otsubo K.
Kitano K.
Ohtani T.
Kawano Y.
Uchida M.
Tetrahedron: Asymmetry
1997,
8:
3707
3e Methionine Sulfoxide: Holland HL.
Brown FM.
Tetrahedron: Asymmetry
1998,
9:
535
3f Omeprazole: von Unge S.
Langer V.
Sjölin L.
Tetrahedron: Asymmetry
1997,
8:
1967
3g Esomeprazole: Cotton H.
Elebring T.
Larsson M.
Li L.
Sörensen H.
von Unge S.
Tetrahedron: Asymmetry
2000,
11:
3819
3h ZD3638: Moseley JD.
Moss WO.
Welham MJ.
Org. Process Res. Dev.
2001,
5:
491
4a
Kagan H. In
Catalytic Asymmetric Synthesis
Ojima I.
Wiley-VCH;
New York:
2000.
Chap. 6c.
4b
Kagan H. In
Asymmetric Oxidation reactions: Practical Approach in Chemistry
Katsuki T.
Oxford University press;
Oxford:
2001.
Chap. 4.1.
5
Pitchen P.
Duñach E.
Deshmukh MN.
Kagan HB.
J. Am. Chem. Soc.
1984,
106:
8188
6
Di Furia F.
Modena G.
Seraglia R.
Synthesis
1984,
325
7a
Brunel J.-M.
Kagan HB.
Synlett
1996,
404
7b
Brunel J.-M.
Kagan HB.
Bull. Soc. Chim. Fr.
1996,
133:
1109
8a
Donnoli MI.
Superchi S.
Rosini C.
J. Org. Chem.
1998,
63:
9392
8b
Bonchio M.
Licini G.
Di Furia F.
Mantovani S.
Modena G.
Nugent WA.
J. Org. Chem.
1999,
64:
1326
8c
Martyn LJP.
Pandiaraju S.
Yudin AK.
J. Organomet. Chem.
2000,
603:
98
8d
Kokubo C.
Katsuki T.
Tetrahedron
1996,
52:
13895
8e
Peng Y.
Feng X.
Cui X.
Jiang Y.
Chan ASC.
Synth. Commun.
2001,
31:
2287
8f
Alcón MJ.
Corma A.
Iglesias M.
Sánchez F.
J. Mol. Catal. A: Chem.
2002,
178:
253
9a
Mekmouche Y.
Hummel H.
Ho RYN.
Que L.
Schünemann V.
Thomas F.
Trautwein AX.
Lebrun C.
Gorgy K.
Leprêtre J.-C.
Collomb M.-N.
Deronzier A.
Fontecave M.
Ménage S.
Chem.-Eur. J.
2002,
8:
1196
9b
Saito B.
Katsuki T.
Tetrahedron Lett.
2001,
42:
3873
9c
Brinksma J.
La Crois R.
Feringa BL.
Donnoli MI.
Rosini C.
Tetrahedron Lett.
2001,
42:
4049
10a
Bolm C.
Bienewald F.
Angew. Chem., Int. Ed. Engl.
1995,
34:
2640
10b
Vetter AH.
Berkessel A.
Tetrahedron Lett.
1998,
39:
1741
10c
Skarzewski J.
Ostrycharz E.
Siedlecka R.
Tetrahedron: Asymmetry
1999,
10:
3457
10d
Karpyshev NN.
Yakovleva OD.
Talsi EP.
Bryliakov KP.
Tolstikova OV.
Tolstikov AG.
J. Mol. Catal. A: Chem.
2000,
157:
91
10e
Ohta C.
Shimizu H.
Kondo A.
Katsuki T.
Synlett
2002,
161
11
Green SD.
Monti C.
Jackson RFW.
Anson MS.
Macdonald SJF.
Chem. Commun.
2001,
2594
12
Bryliakov KP.
Karpyshev NN.
Fominsky SA.
Tolstikov AG.
Talsi EP.
J. Mol. Catal. A: Chem.
2001,
171:
73
13 Compound 5: 1H NMR (CDCl3, 250 MHz) δ = 10.30 (s, 1 H), 7.15 (m, 2 H), 6.08 (ddt, 1 H, J = 17.0, 10.5, 5.0 Hz), 5.52 (dd, 1 H, J = 17.0, 1.5 Hz), 5.33 (dd, 1 H, J = 10.5, 1.5 Hz), 4.46 (br. d, 2 H, J = 5.0 Hz), 3.98 (br. t, 2 H, J = 5.0 Hz), 2.46 (br. t, 2 H, J = 7.0 Hz), 1.85 (m, 4 H), 1.41 (s, 9 H); 13C NMR (CDCl3, 62 MHz) δ = 190.4, 179.2, 156.5, 154.8, 145.6, 132.7, 130.3, 122.5, 117.5, 108.3, 79.9, 67.7, 35.2, 33.5, 30.7 (3 C), 28.5, 21.4; MS (ES) m/z = 335 (M + H+), 279, 251, 233.
14
Hofsløkken NU.
Skattebøl L.
Acta Chem. Scand.
1999,
53:
258
15 Chiral amino acids failed to react with supported salicylaldehyde 6.
16 Typical procedure: Solid supported Schiff base 7 (6 µmol, 0.012 equiv) was weighed in an Alltech tube and the resin was swollen in CH2Cl2 for 1 h. A 0.04 M solution of VO(acac)2 in CH2Cl2 (1 mL, 40 µmol) was added and the mixture was shaken for 1 h. The solution was filtered and the resin washed with CH2Cl2 (5 × 2 mL) and transferred into a reaction test tube. A 0.5 M solution of thioanisole (1 mL, 0.5 mmol, 1 equiv) and 1,2,3-trimethoxybenzene (0.1 mmol, 0.2 equiv, internal standard) in CH2Cl2 was added, followed by 7% H2O2 in H2O (240 µL, 1.1 equiv). The reaction mixture was stirred for 16 h and analysed by chiral HPLC (Chiralcel OD-H, 5% EtOH in heptane, 1 mL/min, 227 nm). Retention times: 4.2 min(thioanisole), 7.1 min (internal standard), 11.7 min (R-methyl-phenylsulfoxide), 13.1 min (S-methyl-phenylsulfoxide), 14.3 min (methyl-phenylsulfone).
17a
Canali L.
Cowan E.
Deleuze H.
Gibson CL.
Sherrington DC.
J. Chem. Soc., Perkin Trans. 1
2000,
2055
17b
Reger TS.
Janda KD.
J. Am. Chem. Soc.
2000,
122:
6929
17c
Sigman MS.
Jacobsen EN.
J. Am. Chem. Soc.
1998,
120:
4901
18 4-Bromo-1-hydroxy-2-naphthaldehyde was prepared by bromination of 1-hydroxy-2-naphthaldehyde with N-bromosuccinimide according to a literature procedure
[19]
and isolated in 60% yield. Spectroscopic data: 1H NMR (CDCl3, 250 MHz) δ = 12.60 (s, 1 H), 9.92 (s, 1 H), 8.49 (d, 1 H, J = 8.5 Hz), 8.19 (d, 1 H, J = 8.5 Hz), 7.80 (t, 1 H, J = 8.5 Hz), 7.80 (s, 1 H), 7.63 (t, 1 H, J = 8.5 Hz); 13C NMR (CDCl3, 62 MHz) δ = 195.2, 161.3, 135.5, 131.8, 129.4, 127.2, 126.9, 125.8, 124.8, 114.8, 112.1.
19
Boehlow TR.
Harburn JJ.
Spilling CD.
J. Org. Chem.
2001,
66:
3111
20 Compound 10: 1H NMR (CDCl3, 250 MHz) δ = 14.85 (br. s, 1 H), 8.10 (s, 1 H), 8.00 (d, 1 H, J = 2.0 Hz), 7.51 (d, 1 H, J = 2.0 Hz), 3.99 (dd, 1 H, J = 11.5, 2.5 Hz), 3.69 (dd, 1 H, J = 11.5, 9.5 Hz), 3.07 (dd, 1 H, J = 9.5, 2.5 Hz), 1.00 (s, 9 H); 13C NMR (CDCl3, 62 MHz) δ = 166.5, 164.6, 149.9, 141.0, 117.0, 92.6, 78.2, 75.9, 61.8, 32.9, 26.8 (3 C); MS (ES) m/z = 474 (M + H+).
21 Compound 11: 1H NMR (CDCl3, 250 MHz) δ = 13.57 (br. s, 1 H), 8.39 (d, 1 H, J = 8.0 Hz), 7.98 (d, 1 H, J = 8.0 Hz), 7.70 (m, 1 H), 7.67 (t, 1 H, J = 8.0 Hz), 7.49 (t, 1 H, J = 8.0 Hz), 7.01 (s, 1 H), 4.06 (dd, 1 H, J = 11.5, 3.0 Hz), 3.76 (br. t, 1 H, J = 10.5 Hz), 3.16 (m, 1 H), 1.07 (s, 9 H); 13C NMR (CDCl3, 62 MHz) δ = 177.1, 162.2, 135.9, 131.5, 130.7, 127.7, 126.1, 125.5, 109.4, 107.0, 75.2, 62.3, 33.5, 27.2 (3 C); MS (ES) m/z = 350 and 352 (M + H+).
22 Typical experimental procedure: To a 0.03 M solution of ligand in CH2Cl2 (0.25 mL, 7.5 µmol, 0.015 equiv) was added a 0.02 M solution of VO(acac)2 in CH2Cl2 (0.25 mL, 5 µmol, 0.01 equiv) and the resulting mixture was stirred at r.t. for 30 min. A 1 M solution of sulfide in CH2Cl2 (0.5 mL, 0.5 mmol, 1 equiv) was added and after 30 min stirring at r.t., the reaction mixture was cooled down to 0 °C. After 15 min at 0 °C, 27% H2O2 in H2O (65 µL, 1.2 mmol, 1.2 equiv) was added dropwise. The mixture was stirred at 0 °C for 16 h and the solvent evaporated. The crude residue was purified by column chromatography (silica gel, EtOAc-cyclohexane).