References
1
Erion MD.
Walsh CT.
Biochemistry
1987,
26:
3417
2
Groth U.
Lehmann L.
Richter L.
Schöllkopf U.
Liebigs Ann. Chem.
1993,
427
3
Hercouet A.
Le Corre M.
Carboni B.
Tetrahedron Lett.
2000,
41:
197
4
Hah JH.
Gil JM.
Oh DY.
Tetrahedron Lett.
1999,
40:
8235
5
Diel PJ.
Maier L.
Phosphorus and Sulfur
1984,
20:
313
6
Reid JR.
Marmor RS.
J. Org. Chem.
1978,
43:
999
7
Duquenne C.
Goumain S.
Jubault P.
Feasson C.
Quirion J.-C.
Org. Lett.
2000,
2:
453
8
Hanessian S.
Cantin L.-D.
Roy S.
Andreotti D.
Gomtsyan A.
Tetrahedron Lett.
1997,
38:
1103
9
Hirao T.
Hagihara M.
Agawa T.
Bull. Chem. Soc. Jpn.
1985,
58:
3104
10
Seyferth D.
Marmor RS.
Hilbert P.
J. Org. Chem.
1971,
36:
1379
11
Regitz M.
Scherer H.
Anschütz W.
Tetrahedron Lett.
1970,
10:
753
12
Minami T.
Yamanouchi T.
Tokumasu S.
Hirao I.
Bull. Chem. Soc. Jpn.
1984,
57:
2127
13
Midura WH.
Krysiak JA.
Wieczorek MW.
Majzner WR.
Mikolajczyk M.
Chem. Commun.
1998,
1109
14
Midura WH.
Krysiak JA.
Mikolajczyk M.
Tetrahedron
1999,
55:
14791
15
Yamazaki S.
Takada T.
Imanishi T.
Moriguchi Y.
Yamabe S.
J. Org. Chem.
1998,
63:
5919
16
Jubault P.
Goumain S.
Feasson C.
Collignon N.
Tetrahedron
1998,
54:
14767
17
Goumain S.
Jubault P.
Feasson C.
Collignon N.
Synthesis
1999,
1903
18
Goumain S.
Jubault P.
Feasson C.
Collignon N.
Tetrahedron Lett.
1999,
40:
8099
19
Fadel A.
Tesson N.
Eur. J. Org. Chem.
2000,
2153
20
Fadel A.
Tesson N.
Tetrahedron: Asymmetry
2000,
11:
2023
21
Griffin CE.
Kraas E.
Terasawa H.
Griffin GW.
Lankin DC.
J. Heterocycl. Chem.
1978,
15:
523
22
Nasser J.
About-Jaudet E.
Collignon N.
Phosphorus Sulfur Silicon
1990,
54:
171
23
Kondo K.
Liu Y.
Tunemoto D.
J. Chem. Soc., Perkin Trans. 1
1974,
1279
24
Verhé R.
De Kimpe N.
De Buyck L.
Courtheyn D.
Van Caenegem L.
Schamp N.
Bull. Soc. Chim. Belg.
1983,
93:
371
25
Little RD.
Verhé R.
Monte WT.
Nugent S.
Dawson JR.
J. Org. Chem.
1982,
47:
362
26
Verhé R.
De Kimpe N.
De Buyck L.
Courtheyn D.
Schamp N.
Bull. Soc. Chim. Belg.
1978,
87:
215
27
General Procedure for the Bromination of Alkylidenemalonates or Cyanides. A solution of 10 mmol of Knoevenagel adduct 2, 13 mmol of NBS and 10 mg of BPO in 5 mL of CCl4 was refluxed under UV irradiation for approximately 2 hours. The end of the reaction was monitored carefully by 1H NMR. Evaporation of the solvent gave almost pure bromoalkylidene malonates or cyanides 4 in good yields.
28 Spectral data of 4k: 1H NMR [CDCl3, δ (ppm)]: 1.06 (6 H, t, J = 7.3 Hz, Me2), 2.30 (4 H, m, CH2), 3.91 (3 H, s, OMe), 7.74 (1 H, s, CH=). 13C NMR [CDCl3, δ(ppm)]: 10.31 (Me), 34.06 (CΗ2); 42.64 (CBr), 53.71 (OMe); 106.37 (=C); 113.31 (CN); 161.83 (CH=); 162.74 (COOMe). IR (cm-1): 2231 (CN), 1740 (C=O), 1621 (C=C). MS (m/z) (%): 234 (0.5); 182(12); 181(100); 148(60); 122(12); 121(29); 107(14); 94(14); 84(13); 49(12). Anal. Calcd. for C10H14BrNO2: C 46.17; H 5.42; N 5.38. Found: C 46.35; H 5.53; N 5.02.
29
General Procedure for the Preparation of the Cyclopropylphosphonates. A mixture of 2.5 mmol bromoalkylidenemalonate or -cyanide 4 and 3 mmol of trialkyl phosphite was stirred under nitrogen atmosphere for the appropriate time (Table
[1]
). The volatile compounds formed and the excess of phosphite were then removed by evaporation under vacuum and the mixture was purified by flash chromatography or by distillation.
30 Spectral data of 7a: 1H NMR [CDCl3, δ (ppm)]: 1.24 (3 H, d, J= 1.3 Hz, Me); 1.58 (3 H, s, Me); 1.86 (1 H, d, J = 1.9 Hz, CH-P); 3.76 (3 H, s, OMe); 3.77 (3 H, d, J =1.9 Hz, OMe); 3.78 (3 H, d, J = 1.6 Hz, OMe); 3.81 (3 H, s, OMe). 13C NMR [CDCl3, δ(ppm), J
P-C(Hz)]: 19.53 (Me, 5); 22.21 (Me, 5.1); 27.65 (CHP, 188); 30.38 (CMe2, 3.6); 43.56 [C(COOMe]2, 3.6); 52.15 (OMe, 6.1); 52.65 (OMe); 52.99 (OMe, 4.9); 53.03 (OMe); 166.64 (COOMe, 123.3); 167.92 (COOMe). 31P NMR referenced to H3PO4 [CDCl3, δ(ppm)]: 25.00. IR (cm-1): 1256 (P=O), 1733 (C=O). MS (m/z) (%): 294 (M+, 0.5); 235(12); 231(20); 229(30); 220(8); 203(21); 186(9); 185(86); 153(100); 125(12); 110(14); 109(18); 93(11); 79(12). Anal. Calcd. for C11H19O7P: C 44.90; H 6.51.
Found: C 44.65; H 6.63.
31 For details of Reaction rates see Table 2.
Table 2 Kinetic Data of the Reactions of the electrophilic Allyl Halides 4 with Trivalent Nucleophiles to 7 at 35 °C. |
|
Entry
|
X
|
K 1/mol.s
|
Rel. K
|
|
a
|
Br
|
95.8 × 10-6
|
1.00
|
a′
|
Cla
|
57.6 × 10-6
|
0.60
|
b
|
Br
|
6.6 × 10-3
|
68.89
|
c
|
Br
|
33.2 × 10-3
|
346.56
|
d
|
Br
|
28.9 × 10-6
|
0.30
|
e
|
Br
|
8.2 × 10-6
|
0.19
|
f
|
Br
|
14.6 × 10-6
|
0.15
|
g
|
Br
|
176.1 × 10-6
|
2.88
|
h
|
Br
|
139.0 × 10-6
|
1.45
|
I
|
Br
|
16.1 × 10-6
|
0.17
|
|
a The chloro derivative was prepared according to the literature procedure by condensation of the chloroaldehyde and the malonate using titanium (IV)chloride and pyridine.
[24]
|
|