Zusammenfassung
Zielsetzung: Eine experimentelle Studie zur Untersuchung des Signalverhaltens artifizieller alveolärer Infiltrate mit T1 - und T2 -gewichteten MR-Sequenzen. Material und Methoden: 10 Lungen-Explantate von Schweinen wurden tracheal intubiert, in der künstlichen Thoraxhöhle eines Phantoms durch Unterdruck entfaltet und an einem klinischen Magnetresonanztomographen bei 1,5 T untersucht. Mit gezielter Instillation von 100 - 200 ml Gelatinelösung wurden alveoläre Infiltrate erzeugt und mit Gradientenecho- (2D-, 3D-GRE) und schnellen Spinechosequenzen (T2 -TSE, T2 -HASTE) dargestellt. Die Signalintensität des Lungenparenchyms nativ und mit Infiltrat wurde an repräsentativen Querschnitten erfasst. Zum Vergleich erfolgten Kontrollen mit Spiral-CT. Ergebnisse: Die instillierte Flüssigkeit simulierte alveoläre Infiltrate mit typischem Milchglasmuster im CT, wie es an Patienten mit Pneumonie oder ARDS beobachtetet wird. Vor dem Versuch zeigten nur T2 -HASTE und T2 -TSE ein Lungenparenchymsignal (Signal/Rausch-Verhältnis von 3,62 bzw. 1,39). Nach Instillation von Flüssigkeit fand sich in diesen Sequenzen ein Signalanstieg von ca. 30 % bei 100 ml (p < 0,01) bzw. 60 % bei 200 ml (p < 0,01). Bei 2D-GRE betrug die Signalintensitätszunahme 0,74 % (p = 0,32) nach 100 ml und 5,6 % (p < 0,01) nach 200 ml (für 3D-GRE 2,2 % [p = 0,02] bzw. 4,4 % [p < 0,01]). Die CT-Kontrollen zeigten für 100 ml eine Dichtezunahme um durchschnittlich 17 H.E. (p = 0,02) und für 200 ml um 75 H.E. (p < 0,01). Schlussfolgerungen: Mit T2 -gewichteten Sequenzen ist die MRT zur Darstellung artifizieller alveolärer Infiltrate geeignet.
Abstract
Purpose: An experimental study using porcine lung explants and a dedicated chest phantom to evaluate the signal intensity of artificial alveolar infiltrates with T1 - and T2 -weighted MRI sequences. Material and Methods: 10 porcine lung explants were intubated, transferred into the cavity of a MRI-compatible chest phantom and inflated by continuous evacuation of the artificial pleural space. All lungs were examined with MRI at 1.5 T before and after intra-tracheal instillation of either 100 or 200 ml gelatine-stabilised liquid to simulate alveolar infiltrates. MR-examination comprised gradient echo (2D- and 3D-GRE) and fast spin echo sequences (T2 -TSE and T2 -HASTE). The signal intensity of lung parenchyma was evaluated at representative cross sections using a standardised scheme. Control studies were acquired with helical CT. Results: The instilled liquid caused patchy confluent alveolar infiltrates resembling the findings in patients with pneumonia or ARDS. CT revealed typical ground-glass opacities. Before the application of the liquid, only T2 -HASTE and T2 -TSE displayed lung parenchyma signals with a signal/noise ratio of 3.62 and 1.39, respectively. After application of the liquid, both T2 -weighted sequences showed clearly visible infiltrates with an increase in signal intensity of approx. 30 % at 100 ml (p < 0.01) and 60 % at 200 ml (p < 0.01). With 2D- and 3D-GRE the infiltrates were not visible, although the lung parenchyma signal increase was statistically significant. On 2D-GRE the increase in signal intensity reached 0.74 % (p = 0.32) after 100 ml and 5.6 % (p < 0.01) after 200 ml (for 3D-GRE: 2.2 % [p = 0.02] at 100 ml and 4.4 % at 200 ml [p < 0.01]). The CT controls revealed a significant increase of lung density of 17 H.E. at 100 ml (p = 0.02) and 75 H.E. at 200 ml (p < 0.01). Conclusions: MRI with T2 -weighted sequences detects artificial alveolar infiltrates with high signal intensity and may be a highly sensitive tool to detect pneumonia in patients.
Schlüsselwörter
MRT - Lunge - Infiltrate - Explantate - Thoraxphantom
Key words
MRI - Lung - Infiltration - Explants - Chest phantom
Literatur
1
Hatabu H, Chen Q, Stock K W, Gefter G B, Itoh H.
Fast magnetic resonance imaging of the lung.
Eur J Radiol.
1999;
29
114-132
2
Leutner C, Schild H.
MRT des Lungenparenchyms.
Fortschr Röntgenstr.
2001;
173
168-175
3
Kauczor H U, Heussel C P, Schreiber W G, Kreitner K F.
Neue Entwicklungen in der MRT des Thorax.
Radiologe.
2001;
41
279-287
4
Landwehr P, Schulte O, Lackner K.
MR imaging of the chest: Mediastinum and chest wall.
Eur Radiol.
1999;
9
1737-1744
5
Shiotani S, Sugimura K, Sugihara M, Kawamitsu H, Yamauchi M, Yoshida M, Kushima T, Kinoshita T, Endoh H, Nakayama H, Kajitani M, Wada M.
Diagnosis of chest wall invasion by lung cancer: useful criteria for exclusion of the possibility of chest wall invasion with MR imaging.
Radiat Med.
2000;
18
283-290
6
Primack S L, Mayo J R, Hartman T E, Miller R R, Müller N L.
MRI of Infiltrative Lung Disease: Comparison with pathologic findings.
J Comp Assist Tomography.
1994;
18
233-238
7
Biederer J, Reuter M, Winkler C, Both M, Richter C, Schnabel A, Gross W-L, Heller M.
MRI follow-up of pulmonary manifestations in patients with Wegener's disease.
Eur Radiol.
2001;
11
(1)
244
8
Kersjes W, Hildebrandt G, Cagil H, Schunk K, Zitzewitz H, Schild H.
Differentiation of alveolitis and pulmonary fibrosis in rabbits with magnetic resonance imaging after intrabronchial administration of bleomycin.
Invest Radiol.
1999;
34
13-21
9
Ohno Y, Adachi S, Kono M, Kusomoto M, Motoyama A, Sugimura K.
Predicting the prognosis of non-small cell lung cancer patient treated with conservative therapy using contrast-enhanced MR imaging.
Eur Radiol.
2000;
10
1770-1781
10
Biederer J, Oppermann H-C, Ankermann T, Reuter M, Heller M.
Low-dose HRCT and MRI Of Congenital Cystic Adenomatoid Malformation of the Lung.
Eur Radiol.
2000;
10
G7
11
Wagner M, Böwing B, Kuth R, Deimling M, Rascher W, Rupprecht T.
Low field thoracic MRI - a fast and radiation-free routine imaging modality in children.
Magn Reson Imaging.
2001;
19
975-983
12
Biederer J, Graessner J, Heller M.
Magnetic resonance imaging of the lung with a volumetric interpolated 3D-gradient echo sequence.
Fortschr Röntgenstr.
2001;
173
883-887
13
Biederer J, Reuter M, Both M, Muhle C, Grimm J, Graessner J, Heller M.
Analysis of artefacts and detail resolution of lung MRI with breath-hold T1 -weighted gradient echo and T2 -weighted fast spin echo sequences with respiratory triggering.
Eur Radiol.
2002;
12
378-384
14
Su S, Saunders J K, Smith I CP.
Resolving Anatomical Details in Lung Parenchyma: Theory and Experiment for a Structurally and Magnetically Inhomogeneous Lung Imaging Model.
Magn Reson Med.
1995;
33
760-765
15
Olberg S, Skretting A, Bruland O, Olsen D R.
Dose distribution measurements by MRI of a phantom containing lung tissue equivalent compartments made of ferrous sulphate gel.
Phys Med Biol.
2000;
45
2761-2770
16
Beckmann N, Tigani B, Ekatodramis D, Borer R, Mazzoni L, Fozard J R.
Pulmonary edema induced by allergen challenge in the rat: Noninvasive assessment by magnetic resonance imaging.
Magn Reson med.
2001;
45
88-95
17
Markstaller K, Kauczor H U, Eberle B, Weiler N, Siebertz D, Birkenkamp K, Heinrichs W, Thelen M.
Multirotations-CT während kontinuierlicher Beatmung: Vergleich unterschiedlicher Dichtebereiche bei gesunden Lungen und im Lavage-ARDS Modell.
Fortschr Röntgenstr.
1999;
170
575-580
18
Moore E H, Webb W R, Müller N, Sollito R.
MRI of pulmonary airspace disease: experimental model and preliminary clinical results.
Am J Roentgenol.
1986;
146
1123-1128
19
Leutner C, Gieseke J, Lutterbey G. et al .
MRT versus CT in der Diagnostik von Pneumonien: Evaluation einer T2 -gewichteten ultraschnellen Turbo-Spin-Echo-Sequenz (UTSE).
Fortschr Röntgenstr.
1999;
170
449-456
20
Mai V M, Chen Q, Li W, Hatabu H, Edelman R R.
Effect of Respiratory Phases on MR Lung Signal Intensity and Lung Conspicuity Using Segmented Multiple Inversion Recovery Turbo Spin Echo (MIR-TSE).
Magn Reson Med.
2000;
43
760-763
21
Herold C J, Kuhlmann J E, Zerhouni E A.
Pulmonary atelectasis: Signal patterns with MR imaging.
Radiology.
1991;
178
715-720
22
Bekkelund S I, Aasebo U, Pierre-Jerome C, Holmboe J.
Magnetic resonance imaging of the thorax in the evaluation of asbestosis.
Eur Respir J.
1998;
11
194-197
23
King M A, Bergin C J, Ghadishah E, Yi E S, Clark J B.
Detecting Pulmonary Abnormalities on Magnetic Resonance Images in Patients with Usual Interstitial Pneumonitis: Effect of Varying Window Settings and Gadopentate Dimeglumine.
Acad Radiol.
1996;
3
300-307
24
Mohiaddin R H, Notohamiprodjio G, Schoser K.
Magnetic resonance imaging of lung signal intensity and dimensions in patients with advanced lung disease before and after single lung transplantation.
Eur J Radiol.
1995;
20
16-22
25
Gaeta M, Blandino A, Scribano E, Minutoli F, Barone M, Ando F, Pandolfo I.
Chronic infiltrative lung diseases: value of gadolinium-enhanced MRI in the evaluation of disease-activity - early report.
Chest.
2000;
117
1173-1178
26
Berthezène Y, Vexler V, Jerome H, Sievers R, Moseley M E, Brasch R C.
Differentiation of capillary leak and hydrostatic pulmonary edema with a macromolecular MR imaging contrast agent.
Radiology.
1991;
181
773-777
27
Brasch R C, Berthezène Y, Vexler V, Rosenau C, Clement O, Muhler A, Kuwatsuru R, Shames D M.
Pulmonary oxygen toxicity: Demonstration of abnormal capillary permeability using contrast-enhanced MRI.
Pediatr Radiol.
1993;
23
495-500
28
Shioya S, Haida M, Ono Y, Fukuzaki M, Matsu-Ura Y, Tsuda M, Ohta Y, Yamabayashi H.
Tissue Characterization of Pneumonia and irradiated Rat Lungs with Magnetic Resonance Relaxation Times.
Magn Reson Imag.
1994;
12
799-803
Dr. med. Jürgen Biederer
Klinik für Diagnostische Radiologie, Universitätsklinikum Kiel
Arnold-Heller-Straße 9
24105 Kiel 1
Phone: + 49-431-5973153
Fax: + 49-431-5973151
Email: juergen.biederer@rad.uni-kiel.de