References
1a Isolation
and biological evaluation: Tsuchida T.
Iinuma H.
Nishida C.
Kinoshita N.
Sawa T.
Hamada M.
Takeuchi T.
J. Antibiot.
1995,
48:
1104
1b Structure determination: Tsuchida T.
Iinuma H.
Sawa R.
Takahashi Y.
Nakamura H.
Nakamura KT.
Sawa T.
Naganawa H.
Takeuchi T.
J. Antibiot.
1995,
48:
1110
For references to representative
members of this class of natural products, see:
2a
Alvi KA.
Nair BG.
Rabenstein J.
Davis G.
Baker DD.
J. Antibiot.
2000,
53:
110
2b
Arai K.
Miyajima H.
Mushiroda T.
Yamamoto Y.
Chem. Pharm. Bull.
1989,
37:
3229
2c
Jacobsen JP.
Reffstrup T.
Cox RE.
Holker JSE.
Boll PM.
Tetrahedron Lett.
1978,
1081 ; and references therein
3
Paintner FF.
Bauschke G.
Kestel M.
Tetrahedron
Lett.
2000,
41:
9977
4 For a previous attempt to access
the 3,4-dihydro-2H,8H-furo[3,4-b]oxepine-5,6-dione
ring system, see: Gelin S.
Pollet P.
Synth. Commun.
1980,
10:
805
5
Shing TKM.
Tam EKW.
Tai VW.-F.
Chung IHF.
Jiang Q.
Chem.-Eur.
J.
1996,
2:
50
6
Paintner FF.
Allmendinger L.
Bauschke G.
Synthesis
2001,
2113
7
(1
RS
,9
RS
)-9-Methyl-2,5-dioxa-tricyclo[7.3.1.0
[3]
[7]
] tridec-3(7),11-dien-6,8-dione(12). Colorless crystals (EtOAc); mp 144 °C;
IR (KBr): 3061, 2928, 1776, 1611 cm-1;
MS (CI, CH5
+): m/z (%) = 221(100) [M + H+]; 1H
NMR (CDCl3): δ = 1.22 [s,
3 H, CH3-(C-9)], 1.97 (d, J = 17.9
Hz, 1 H, 10-H), 2.11 (dd, J = 16.1/6.5
Hz, 1 H, 13-H), 2.46 (d, J = 16.1
Hz, 1 H, 13-H), 2.73 (dd, J = 17.9/6.0
Hz, 1 H, 10-H), 4.52 (d, J = 16.7
Hz, 1 H, 4-H), 4.63 (d, J = 16.7
Hz, 1 H, 4-H), 5.31 (m, 1 H, 1-H) 5.73 (m, 1 H, 12-H), 6.18 (m,
1 H, 11-H); 13C NMR (CDCl3): δ = 25.9 [CH3-(C-9)], 34.4
(C-13), 37.3 (C-10), 44.7 (C-9), 65.4 (C-4), 76.6 (C-1), 102.7 (C-7),
121.4 (C-12), 135.2 (C-11), 168.8 (C-6), 176.8 (C-3), 198.2 (C-8); Anal.
Calcd for C12H12O4 (220.23): C,
65.45; H, 5.64; Found: C, 65.68; H, 5.64.
8 Crystallographic data for structure 12 have been deposited with the Cambridge
Crystallographic Data Centre as supplementary publication no. CCDC
182759. Copies of the data can be obtained free of charge, on application
to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK. Fax: 44 1223 336033
or e-mail: deposit@ccdc.cam.ac.uk.
9
E-Z isomers were assigned on the basis
of 2D NMR according to Boll and co-workers: ref. 2c.
Acyl tetronic acids are known to
exist in four monoenolic tautomeric forms. Only exo-enol
tautomer 15 is depicted in Scheme 4 for
reasons of clarity. For a discussion of this tautomeric equilibria,
see:
10a
Jacobsen JP.
Reffstrup T.
Boll PM.
Acta Chem. Scand., Ser. B
1977,
31:
756
10b
Gelin S.
Pollet P.
Tetrahedron Lett.
1980,
21:
4491
10c
Eckert-Maksic M.
Maksimovic L.
J. Mol.
Struct. Theochem
1987,
153:
121
10d
Broughton HB.
Woodward PR.
J.
Comput.-Aided Mol. Des.
1990,
4:
147 ; and
references therein
11
Bassindale AR.
Stout T.
J. Organomet. Chem.
1984,
271:
C1
12
Schraml J.
Kvicalovi M.
Blechta V.
Cermak J.
Magn. Reson. Chem.
1997,
35:
659
13 Attempts to achieve fluoride ion induced
cyclization of acyl tetronate 7 [TBAF·3H2O
(1.0 equiv), THF, r.t.] were unsuccessful, due to preferential
cleavage of the activated enol ether thus affording tetrabutylammonium
salt i (Figure
[3]
) on aqueous work up.
14
Clemo NG.
Pattenden G.
J. Chem. Soc., Perkin Trans.
1
1985,
2407
15
Dess DB.
Martin JC.
J. Org. Chem.
1983,
48:
4155
16
Pollet P.
Gelin S.
Tetrahedron
1978,
34:
1453
17 Treatment of 24 with
osmium tetroxide (2 mol%) and N-methylmorpholine N-oxide (1.0 equiv) as co-oxidant (acetone, t-BuOH, H2O, r.t.) gave ii (34%) and iii (12%) (Figure
[4]
) along with recovered starting
material (36%).
The facile oxidation of sulfides
to sulfones in the presence of C-C double bonds using catalytic
osmium tetroxide and N-methylmorpholine-N-oxide or trimethylamine-N-oxide as co-oxidant has been reported:
18a
Kaldor SW.
Hammond M.
Tetrahedron
Lett.
1991,
32:
5043
18b
Priebe W.
Grynkiewicz G.
Tetrahedron Lett.
1991,
32:
7353
On the other hand, sulfides are
known to be essentially inert to oxidation by osmium tetroxide under
stoichiometric conditions:
19a
Stork G.
van Tamelen EE.
Friedman LJ.
Burgstahler AW.
J.
Am. Chem. Soc.
1953,
75:
384
19b
Djerassi C.
Engle RR.
J. Am. Chem. Soc.
1953,
75:
3838
19c
Henbest HB.
Khan SA.
J.
Chem. Soc., Chem. Commun.
1968,
1036
19d For chemoselective oxidations
of C-C double bonds in the presence of sulfides with catalytic OsO4 and
K3Fe(CN)6 as co-oxidant, see: Walsh PJ.
Ho PT.
King B.
Sharpless KB.
Tetrahedron
Lett.
1994,
35:
5129
20
Yamada T.
Hagiwara H.
Uda H.
J.
Chem. Soc., Chem. Commun.
1980,
838
21
tert-Butyldimethylsilyl
ether 27 was prepared to enable chromatographic
purification of the intermediate sulfoxides, which were hardly soluble
in appropriate organic solvents when derived from 26.
22
(1
RS
,9
RS
,11
RS
,12
RS
)-11,12-Dihydroxy-9-methyl-4-methylene-2,5-dioxatricyclo-[7.3.1.0
[3]
[7]
]tridec-3(7)-ene-6,8-dione(5). Colorless crystals (MeCN); mp > 370 °C;
IR (KBr): 3460, 2924, 1786, 1588 cm-1;
MS (CI, CH5
+): m/z (%) = 267(100) [M + H+]; 1H
NMR (d
6-DMSO): δ = 1.07 [s, 3
H, CH3-(C-9)], 1.58 (dd, J = 12.4/3.7
Hz, 1 H, 10-Heq), 1.72 (t, J = 12.4
Hz, 1 H, 10-Hax), 1.99 (dd, J = 16.4/4.5
Hz, 1 H, 13-H), 2.31 (d, J = 16.4
Hz, 1 H, 13-H), 3.39 (d, J = 12.4 Hz,
1 H, 11-H), 3.89 (m, 1 H, 12-H), 4.80 (d, J = 5.6
Hz, 1 H, OH), 4.98 (m, 1 H, 1-H), 5.39 [d, J = 2.8 Hz, 1 H, (C-4) =CH2],
5.41 [d, J = 2.8 Hz,
1 H, (C-4) =CH2], 5.43 (d, J = 4.5 Hz, 1 H, OH); 13C
NMR (d
6-DMSO): δ = 26.3 [CH3-(C-9)], 28.4
(C-13), 39.2 (C-10), 47.7 (C-9), 64.7 (C-11), 72.3 (C-12), 84.2
(C-1), 96.7 [(C-4) =CH2],
101.5 (C-7), 147.6 (C-4), 163.4 (C-6), 165.6 (C-3), 198.3 (C-8);
HRMS: m/z Calcd for C13H14O6 (M+):
266.0790; Found: 266.0762.