References
1
Collins PM.
Ferrier RJ.
Monosaccharides:
Their Chemistry and Their Roles in Natural Products
John
Wiley and Sons;
Chichester:
1996.
p.189
2
Jegou E.
Cleophax J.
Leboul J.
Gero SD.
Carbohydr. Res.
1975,
45:
323
3
Apostolopoulos CD.
Couladouros EA.
Georgiadis MP.
Liebigs Ann. Chem.
1994,
781
4
Couladouros EA.
Constantinou-Kokotou V.
Georgiadis MP.
Kokotos G.
Carbohydr.
Res.
1994,
254:
317
5
Baer HH.
Neilson T.
J. Org. Chem.
1967,
32:
1068
6
Lichtenthaler FW.
Vors P.
Mayer N.
Angew.
Chem., Int. Ed. Engl.
1969,
8:
211
7
Nakagawa T.
Sakakibara T.
Kumazawa S.
Tetrahedron Lett.
1970,
1645
8
Rajabalee FJ.-M.
Carbohydr.
Res.
1973,
26:
219
9
Paulsen H.
Greve W.
Chem. Ber.
1974,
107:
3013
10
Sakakibara T.
Tachimori Y.
Sudoh R.
Tetrahedron
1984,
40:
1533
11
Sakakibara T.
Takai I.
Yamamoto A.
Tachimori Y.
Sudoh R.
Ishido Y.
Carbohydr. Res.
1987,
169:
189
12
Seta A.
Tokuda K.
Kaiwa M.
Sakakibara T.
Carbohydr. Res.
1996,
281:
129
13
Bera S.
Sakthivel K.
Langley GJ.
Pathak T.
Tetrahedron
1995,
51:
7857
14
Bera S.
Langley GJ.
Pathak T.
J.
Org. Chem.
1998,
63:
1754
15
Simpkins NS.
Sulphones in Organic Synthesis
1st
Ed.:
Pergamon Press;
Oxford:
1993.
p.183
16a
Ravindran B.
Sakthivel K.
Suresh CG.
Pathak T.
J. Org.
Chem.
2000,
65:
2637
16b
Suresh CG.
Ravindran B.
Rao KN.
Pathak T.
Acta
Cryst., Sect. C
2000,
C56:
1030
17a
Ravindran B.
Deshpande SG.
Pathak T.
Tetrahedron
2001,
57:
1093
17b
Ravindran B.
Pathak T.
Ind. J. Chem. B
2001,
40:
1114
18
Yamashita A.
Rosowsky A.
J. Org. Chem.
1976,
41:
3422
19
Collins PM.
Ferrier RJ.
Monosaccharides:
Their Chemistry and Their Roles in Natural Products
John
Wiley and Sons;
Chichester:
1996.
p.63
20
Evans ME.
Angyal SJ.
Carbohydr. Res.
1972,
25:
43
21 Methanolysis of 1,2:5,6-di-O-isopropylidene-α-d-allofuranose
in the presence of acid produced more than six products, see: Williams JM.
Carbohydr. Res.
1970,
13:
281
22
Nayak UG.
Whistler RL.
J. Org. Chem.
1969,
34:
3819
23
Peat S.
Wiggins LF.
J. Chem. Soc.
1938,
1088
24 Compound 19α on
reaction with thiophenol produced 2-substituted d-altro-derivative, see: Hanessian S.
Plessas NR.
Chem.
Commun.
1968,
706
25 Analytical and spectroscopic data
of selected compounds. 6α: Gummy
material. Found: C, 64.48; H, 5.90; S, 8.67. C20H22O5S
requires C, 64.15; H, 5.91; S, 8.56%; 1H
NMR: δ = 6.59 (1 H, s), 5.88 (1 H, d, J = 4.4 Hz), 5.13 (1 H, m),
4.44 (2 H, s, PhCH2), 3.85 (1 H, dd, J = 10.7,
2.4 Hz), 3.60 (1 H, dd, J = 10.7,
4.4 Hz), 3.39 (3 H, s, OMe), 2.42 (3 H, s, ArMe). 6β:
Gummy material. Found: C, 64.41; H, 6.36; S, 8.81. C20H22O5S
requires C, 64.15; H, 5.91; S, 8.56%; 1H NMR: δ = 6.60
(1 H, s), 5.72 (1 H, s), 4.95 (1 H, d, J = 6.3 Hz),
4.47 (2 H, s, PhCH2), 3.83 (1 H, dd, J = 10.7,
2.4 Hz), 3.50 (1 H, m), 3.42 (3 H, s, OMe), 2.43 (3 H, s, ArMe). 16: White solid, mp 158-159 °C.
Found: C, 56.19; H, 6.90; S, 8.62. C18H24O7S
requires C, 56.23; H, 6.28; S, 8.34%; 1H NMR: δ = 5.96
(1 H, d, J = 3.9 Hz), 4.96 (1
H, d, J = 3.5 Hz), 1.49 (3 H,
s, Me), 1.35 (3 H, s, Me), 1.29 (3 H, s, Me), 1.21 (3 H, s, Me).
26 Compounds 22α and 22β have been synthesized earlier
[11]
[16a]
from d-glucose
in 14 steps (7 steps for each anomer). The present method makes
use of common intermediates upto compounds 21α and 21β, thereby drastically reducing
the overall purification steps. Although overall yields for both the
methods are comparable, methyl β-d-glucopyranoside, which
has been used in the earlier synthesis,
[11]
[16a]
is far too expensive
a starting material to be used in a large-scale multi-step synthesis.
27 The configurations at the C-2 and
C-3 positions of 23-25 have been established unambiguously.
The data will be published as part of a full paper.