Subscribe to RSS
DOI: 10.1055/s-2002-32960
A Glycosylation Driven Strategy for the Synthesis of Anomerically Pure Vinyl Sulfone-modified Pent-2-enofuranoses and Hex-2-enopyranoses
Publication History
Publication Date:
25 July 2002 (online)
Abstract
Both α- and β-anomers of vinyl sulfone-modified pent-2-enofuranosides have been synthesized for the first time by taking advantage of the formation of α- and β-methyl glycosides in almost equal ratio only from derivatives of d-xylose. The strategy was equally applicable in the synthesis of α- and β-anomers of vinyl sulfone-modified hex-2-enopyranosides where a d-glucose derivative was selected over a d-allose derivative as the starting material because the former almost exclusively produced the required methyl pyranosides.
Key words
modified carbohydrates - Michael acceptors - vinyl sulfone - pent-2-enofuranoside - hex-2-enopyranoside
- 1
Collins PM.Ferrier RJ. Monosaccharides: Their Chemistry and Their Roles in Natural Products John Wiley and Sons; Chichester: 1996. p.189 - 2
Jegou E.Cleophax J.Leboul J.Gero SD. Carbohydr. Res. 1975, 45: 323 - 3
Apostolopoulos CD.Couladouros EA.Georgiadis MP. Liebigs Ann. Chem. 1994, 781 - 4
Couladouros EA.Constantinou-Kokotou V.Georgiadis MP.Kokotos G. Carbohydr. Res. 1994, 254: 317 - 5
Baer HH.Neilson T. J. Org. Chem. 1967, 32: 1068 - 6
Lichtenthaler FW.Vors P.Mayer N. Angew. Chem., Int. Ed. Engl. 1969, 8: 211 - 7
Nakagawa T.Sakakibara T.Kumazawa S. Tetrahedron Lett. 1970, 1645 - 8
Rajabalee FJ.-M. Carbohydr. Res. 1973, 26: 219 - 9
Paulsen H.Greve W. Chem. Ber. 1974, 107: 3013 - 10
Sakakibara T.Tachimori Y.Sudoh R. Tetrahedron 1984, 40: 1533 - 11
Sakakibara T.Takai I.Yamamoto A.Tachimori Y.Sudoh R.Ishido Y. Carbohydr. Res. 1987, 169: 189 - 12
Seta A.Tokuda K.Kaiwa M.Sakakibara T. Carbohydr. Res. 1996, 281: 129 - 13
Bera S.Sakthivel K.Langley GJ.Pathak T. Tetrahedron 1995, 51: 7857 - 14
Bera S.Langley GJ.Pathak T. J. Org. Chem. 1998, 63: 1754 - 15
Simpkins NS. Sulphones in Organic Synthesis 1st Ed.: Pergamon Press; Oxford: 1993. p.183 -
16a
Ravindran B.Sakthivel K.Suresh CG.Pathak T. J. Org. Chem. 2000, 65: 2637 -
16b
Suresh CG.Ravindran B.Rao KN.Pathak T. Acta Cryst., Sect. C 2000, C56: 1030 -
17a
Ravindran B.Deshpande SG.Pathak T. Tetrahedron 2001, 57: 1093 -
17b
Ravindran B.Pathak T. Ind. J. Chem. B 2001, 40: 1114 - 18
Yamashita A.Rosowsky A. J. Org. Chem. 1976, 41: 3422 - 19
Collins PM.Ferrier RJ. Monosaccharides: Their Chemistry and Their Roles in Natural Products John Wiley and Sons; Chichester: 1996. p.63 - 20
Evans ME.Angyal SJ. Carbohydr. Res. 1972, 25: 43 - 21 Methanolysis of 1,2:5,6-di-O-isopropylidene-α-d-allofuranose
in the presence of acid produced more than six products, see:
Williams JM. Carbohydr. Res. 1970, 13: 281 - 22
Nayak UG.Whistler RL. J. Org. Chem. 1969, 34: 3819 - 23
Peat S.Wiggins LF. J. Chem. Soc. 1938, 1088 - 24 Compound 19α on
reaction with thiophenol produced 2-substituted d-altro-derivative, see:
Hanessian S.Plessas NR. Chem. Commun. 1968, 706
References
Analytical and spectroscopic data of selected compounds. 6α: Gummy material. Found: C, 64.48; H, 5.90; S, 8.67. C20H22O5S requires C, 64.15; H, 5.91; S, 8.56%; 1H NMR: δ = 6.59 (1 H, s), 5.88 (1 H, d, J = 4.4 Hz), 5.13 (1 H, m), 4.44 (2 H, s, PhCH2), 3.85 (1 H, dd, J = 10.7, 2.4 Hz), 3.60 (1 H, dd, J = 10.7, 4.4 Hz), 3.39 (3 H, s, OMe), 2.42 (3 H, s, ArMe). 6β: Gummy material. Found: C, 64.41; H, 6.36; S, 8.81. C20H22O5S requires C, 64.15; H, 5.91; S, 8.56%; 1H NMR: δ = 6.60 (1 H, s), 5.72 (1 H, s), 4.95 (1 H, d, J = 6.3 Hz), 4.47 (2 H, s, PhCH2), 3.83 (1 H, dd, J = 10.7, 2.4 Hz), 3.50 (1 H, m), 3.42 (3 H, s, OMe), 2.43 (3 H, s, ArMe). 16: White solid, mp 158-159 °C. Found: C, 56.19; H, 6.90; S, 8.62. C18H24O7S requires C, 56.23; H, 6.28; S, 8.34%; 1H NMR: δ = 5.96 (1 H, d, J = 3.9 Hz), 4.96 (1 H, d, J = 3.5 Hz), 1.49 (3 H, s, Me), 1.35 (3 H, s, Me), 1.29 (3 H, s, Me), 1.21 (3 H, s, Me).
26Compounds 22α and 22β have been synthesized earlier [11] [16a] from d-glucose in 14 steps (7 steps for each anomer). The present method makes use of common intermediates upto compounds 21α and 21β, thereby drastically reducing the overall purification steps. Although overall yields for both the methods are comparable, methyl β-d-glucopyranoside, which has been used in the earlier synthesis, [11] [16a] is far too expensive a starting material to be used in a large-scale multi-step synthesis.
27The configurations at the C-2 and C-3 positions of 23-25 have been established unambiguously. The data will be published as part of a full paper.