Zusammenfassung
Die Säugetiere stehen am Ende eines metabolischen Evolutionsprozesses, innerhalb dessen mit dem Schritt vom anaeroben zum aeroben Zellstoffwechsel und dem Übergang der Wirbeltiere vom Wasser- zum Landleben die Grundlagen für eine Steigerung des Energieumsatzes (vom Brady- zum Tachymetabolismus) geschaffen wurden. Die gesteigerte Stoffwechselrate und die damit verbundene endogene Wärmeproduktion bilden die Voraussetzungen für eine erhöhte aerobe Dauerleistungsfähigkeit und für die Homöothermie, die den Säugetieren und Vögeln die Besiedelung gemäßigter Klimazonen ermöglicht hat. Die zugrundeliegende Zunahme der Membranpermeabilität bedingt aber auch einen gesteigerten Energiebedarf (für die Membranpumpenaktivität), der für die verminderte Hypoxietoleranz von Säugetieren verantwortlich ist und eine permanente Substratzufuhr voraussetzt. In Anpassung an eine saisonale Diskrepanz zwischen erhöhtem thermoregulatorischem Energiebedarf und vermindertem Nahrungsangebot hat sich daher bei einigen Kleinsäugern - offenbar aus der „Eintrittspforte” des bei den Warmblütern neu aufgetretenen Non-REM-Schlafes heraus - der Winterschlaf entwickelt. Der Winterschlaf der Säugetiere ist durch eine ausgeprägte Umsatzreduktion gekennzeichnet, die durch eine Azidose moduliert und durch die erhaltene Thermoregulation auf ein verträgliches Maß begrenzt wird. Die Untergrenze der Abkühlung ist dabei offenbar durch einen kritischen Minimalumsatz vorgegeben, der allen Säugetieren gemeinsam ist und bei um so tieferen Körpertemperaturen erreicht wird, je höher der normotherme Energieumsatz ist. Da der spezifische (d. h. auf das Körpergewicht bezogene) Grundumsatz mit abnehmender Körpergröße zunimmt, weisen kleinere Säuger eine höhere Hypothermietoleranz auf als größere. Andererseits bedeutet der Abfall auf ein einheitliches Minimalniveau eine Inaktivierung der üblichen Körpergrößenbeziehung des Energieumsatzes und bildet so das Gegenstück zu dem nach der Geburt erfolgenden Anstieg der Stoffwechselrate von einem niedrigen fetomaternalen auf das der Körpergröße entsprechende höhere Niveau. Dieser postnatale Energieumsatzanstieg, der die einsetzende Thermoregulation erleichtert, verläuft dem zunehmenden Sauerstoffpartialdruck am Übergang vom fetalen zum adulten Kreislauf parallel und liegt damit möglicherweise auch der bei neugeborenen Säugetieren zu beobachtenden Fähigkeit zur Absenkung des Energiebedarfes bei Sauerstoffmangel zugrunde. Es mehren sich Hinweise darauf, dass, wie schon beim Schritt von der Anaerobiose zu Aerobiose, die Steigerung des Stoffwechselrate mit jeder Zunahme des Sauerstoffangebotes ein generelles Prinzip der Evolution darstellt, um - abgesehen von den daraus resultierenden Selektionsvorteilen - die Gewebe vor Sauerstoffüberangebot und oxidativem Stress zu schützen.
Abstract
Mammals are at the end of a gradual metabolic evolution in the course of which the step from anaerobic to aerobic cellular metabolism and the transition from water to land life formed the basis for an increase in metabolic rate (from brady- to tachymetabolism). The increased metabolic rate and the resulting endogenous heat production were the preconditions for enhanced long-term performance as well as for homeothermy which allowed mammals and birds to invade temperate zones. However, the underlying increase in membrane permeability also results in an increased energy demand (for membrane pump activity) which leads to the reduced hypoxia tolerance of mammals and requires a permanent substrate supply. As an adaptation to a seasonal discrepancy between increased thermoregulatory energy demand and decreased food supply, some small mammals apparently extended the newly evolved non-REM-sleep into hibernation. Mammalian hibernation is characterized by a profound metabolic reduction which is influenced by acidosis and limited to a tolerable degree by maintained thermoregulation. The lower limit of cooling seems to be determined by a critical minimal metabolic rate which is common to all mammals. The higher the normothermic metabolic rate, the lower is the temperature at which this minimal metabolic rate is reached. Since specific (i. e., weight-corrected) basal metabolic rate increases with decreasing body mass, small mammals exhibit a higher hypothermia tolerance than larger ones. On the other hand, the metabolic decrease to a uniform minimal level reflects an inactivation of the overall metabolic size relationship and, thus, forms a counterpart to the metabolic increase from a lower fetomaternal to the higher size-related level, occurring after birth. The postnatal metabolic increase which favours the onset of thermoregulation, parallels the increase in oxygen tension at the transition from fetal to adult circulation and, thus, probably enables mammalian neonates to readjust their metabolic needs in response to hypoxia. There is increasing evidence that, similar to the step from anaerobiosis to aerobiosis, the increase in metabolic rate resulting from any increase in oxygen supply is a general principle of evolution that, apart from its further adaptive benefits, protects tissues from oxygen excess and subsequent oxidative stress.
Schlüsselwörter
Evolution - Energieumsatz - Homöothermie - Hypoxie - Hypothermie - Säugetiere - Neugeborene
Key words
Evolution - Metabolic Rate - Homeothermy - Hypoxia - Hypothermia - Mammals - Neonates
Literatur
1 Hoffman E K. Cell volume regulation in mammalian cells. In: Gilles R (ed) Animals and environmental fitness: Physiological and biochemical aspects of adaptation and ecology. Vol. 1. Oxford; Pergamon 1980: 43-59
2
Brendel W, Reulen J, Messmer K.
Die Kälteschwellung des Gehirns und die Begrenzung der Überlebenszeit in Hypothermie.
Klin Wochenschr.
1965;
43
515-517
3
Hochachka P W.
Defense strategies against hypoxia and hypothermia.
Science.
1986;
231
234-241
4
Wald G.
The origins of life.
Proc Nat Acad Sci.
1964;
52
595-611
5 Margulis L. Symbiosis in cell evolution: Microbial communities in the archean and proterozoic eons. 2nd ed. New York; Freeman 1993
6 Cowen R. History of life. 3rd ed. Malden, Mass.; Blackwell 2000
7
Gnaiger E, Steinlechner-Maran R, Méndez G, Eberl T, Margreiter R.
Control of mitochondrial and cellular respiration by oxygen.
J Bioenerg Biomembr.
1995;
27
583-596
8 Daum S. Hypoxie-Einleitung. In: Daum S (Ed). Hypoxie: Pathophysiologie, Klinik und Therapie. München-Deisenhofen; Dustri-Verlag Dr. Karl Feistle 1984: 1-16
9 Rahn H. Gas transport from the external environment to cell. In: de Reuck AVS, Porter R (eds) Development of the lung (Ciba Foundation Symposium). London; Churchill 1967: 3-23
10 Hughes G M. Evolution between air and water. In: de Reuck AVS, Porter R (eds) Development of the lung (Ciba Foundation Symposium). London; Churchill 1967: 64-80
11 Singer D. Bedeutung und Kontrolle der Körpertemperatur bei Homöothermen. In: Weyland W, Braun U, Kettler D (Hrsg) Perioperative Hypothermie: Probleme, Prävention und Therapie. Ebelsbach; Aktiv Druck & Verlag 1997: 1-12
12 Bennett A F, Dawson W R. Metabolism. In: Gans C, Dawson WR (eds) Biology of the reptilia. Vol. 5. Physiology A. London; Academic Press 1976: 127-223
13 Dawson T J. Primitive mammals and patterns in the evolution of thermoregulation. In: Bligh J, Moore RE (eds) Essays on temperature regulation. Amsterdam; North-Holland 1972: 1-18
14
Crompton A W, Taylor C R, Jagger J A.
Evolution of homeothermy in mammals.
Nature.
1978;
72
333-336
15
Else P L, Hulbert A J.
Comparison of the “mammal machine” and the “reptile machine”: Energy production.
Am J Physiol.
1981;
240
R3-R9
16
Else P L, Hulbert A J.
Evolution of mammalian endothermic metabolism: “Leaky” membranes as a source of heat.
Am J Physiol.
1987;
253
R1-R7
17
Hulbert A J, Else P L.
Membranes as possible pacemakers of metabolism.
J Theor Biol.
1999;
199
257-274
18
Hulbert A J, Else P L.
Mechanisms underlying the cost of living in animals.
Annu Rev Physiol.
2000;
62
207-235
19
Belkin D A.
Anoxia: Tolerance in reptiles.
Science.
1963;
139
492-493
20
Doll C J, Hochachka P W, Reiner P B.
Effects of anoxia and metabolic arrest on turtle and rat cortical neurons.
Am J Physiol.
1991;
260
R747-R755
21
Jackson D C.
Metabolic depression and oxygen depletion in the diving turtle.
J Appl Physiol.
1968;
24
503-509
22
Jackson D C.
Living without oxygen: Lessons from the freshwater turtle.
Comp Biochem Physiol A.
2000;
125
299-315
23
Jackson D C, Heisler N.
Plasma ion balance of submerged anoxic turtles at 3 °C: The role of calcium lactate formation.
Respir Physiol.
1982;
49
159-174
24
Jackson D C.
How a turtle's shell helps it survive prolonged anoxic acidosis.
News Physiol Sci.
2000;
15
181-185
25
Bretschneider H J, Hübner G, Knoll D, Lohr B, Nordbeck H, Spieckermann P G.
Myocardial resistance and tolerance to ischemia: Physiological and biochemical basis.
J Cardiovasc Surg.
1975;
16
241-260
26
Bretschneider H J.
Organübergreifende Prinzipien zur Verlängerung der Ischämietoleranz.
Leopoldina.
1992;
37
(R.3)
161-174
27
Singer D, Bretschneider H J.
Metabolic reduction in hypothermia: Pathophysiological problems and natural examples (part 1/2).
Thorac Cardiovasc Surgeon.
1990;
38
205 - 211-212 - 219
28 Singer D, Bach F, Zeller U, Hehenkamp E, Waldow A, Schröter W, Kuhn H-J. From hibernators to neonates: A comparative-physiological approach to metabolic reduction. In: Siegenthaler W, Haas R (eds) Forschung und Klinik an der Schwelle zum 3. Jahrtausend. Stuttgart; Thieme 2000: 222-233
29 Kleiber M. The fire of life: An introduction to animal energetics. New York; Wiley 1961
30 Schmidt-Nielsen K. Scaling: Why is animal size so important? . Cambridge; Cambridge University Press 1984
31
Rubner M.
Über den Einfluss der Körpergröße auf Stoff- und Kraftwechsel.
Z Biol.
1883;
19
535-562
32 Hensel H, Brück K, Raths P. Homeothermic organisms, X. Temperature and development. In: Precht H, Christophersen J, Hensel H, Larcher W (eds) Temperature and life. Berlin; Springer 1973: 670-687
33 Brück K. Wärmehaushalt und Temperaturregelung. In: Schmidt RF, Thews G (Hrsg) Physiologie des Menschen. 23. Aufl. Berlin; Springer 1987: 660-682
34
Hemmingsen A M.
Energy metabolism as related to body size and respiratory surfaces and its evolution.
Rep Steno Mem Hosp (Copenhagen).
1960;
9
1-110
35 Günther B. Stoffwechsel und Körpergröße: Dimensionsanalyse und Similaritätstheorien. In: Aschoff J, Günther B, Kramer K (Hrsg) Energiehaushalt und Temperaturregulation (Gauer/Kramer/Jung, Physiologie des Menschen, Band 2). München; Urban & Schwarzenberg 1971: 117-151
36
Sernetz M, Gelléri B, Hofmann J.
The organism as a bioreactor: Interpretation of the reduction law of metabolism in terms of heterogeneous catalysis and fractal structure.
J Theor Biol.
1985;
117
209-230
37 Sernetz M, Willems H, Bittner H R. Fractal organization of metabolism. In: Wiesner W, Gnaiger E (eds) Energy transformations in cells and organisms. Stuttgart; Thieme 1989: 82-90
38
Porter R K.
Allometry of mammalian cellular oxygen consumption.
Cell Mol Life Sci.
2001;
58
815-822
39
Darveau C-A, Suarez R K, Andrews R D, Hochachka P W.
Allometric cascade as a unifying principle of body mass effects on metabolism.
Nature.
2002;
417
166-170
40
Pearson O P.
Metabolism of small mammals, with remarks on the lower limit of mammalian size.
Science.
1948;
108
44
41 Rahn H. Time, Energy and Body Size. In: Paganelli CV, Farhi LE (eds) Physiological function in special environments. New York; Springer 1989: 203-213
42
Prinzinger R.
Life span in birds and the ageing theory of absolute metabolic scope.
Comp Biochem Physiol A.
1993;
105
609-615
43
Krebs H A.
Body size and tissue respiration.
Biochim Biophys Acta.
1950;
4
249-269
44
Singer D, Schunck O, Bach F, Kuhn H-J.
Size effects on metabolic rate in cell, tissue, and body calorimetry.
Thermochim Acta.
1995;
251
227-240
45
Singer D, Schunck O, Bach F, Kuhn H-J.
Body size allometry of mammalian blood heat output as assessed by microcalorimetry.
Thermochim Acta.
1993;
229
133-145
46
Singer D, Bach F, Bretschneider H J, Kuhn H-J.
Microcalorimetric monitoring of ischemic tissue metabolism: Influence of incubation conditions and experimental animal species.
Thermochim Acta.
1991;
187
55-69
47 Satinoff E. A reevaluation of the concept of the homeostatic organization of temperature regulation. In: Satinoff E, Teitelbaum P (eds) Handbook of behavioral neurobiology. Vol. 6. Motivation. New York ; Plenum 1983: 443-472
48 Hochachka P W, Somero G N. Strategien biochemischer Anpassung. Stuttgart; Thieme 1980
49 Wegener G. Hypoxia and posthypoxic recovery in insects: Physiological and metabolic aspects. In: Hochachka PW, Lutz PL, Sick T, Rosenthal M, van den Thillart G (eds) Surviving hypoxia: Mechanisms of control and adaptation. Boca Raton; CRC 1993: 417-434
50 Singer D. Thermoregulation. In: Schulte am Esch J, Scholz J, Wappler F (eds) Malignant hyperthermia. Lengerich; Pabst Science Publishers 2000: 78-90
51 Blatteis C M (ed). Physiology and pathophysiology of temperature regulation. Singapore; World Scientific 1998
52 Lyman C P. Why bother to hibernate? . In: Lyman CP, Willis JS, Malan A, Wang LCH (eds) Hibernation and torpor in mammals and birds. New York; Academic Press 1982: 1-11
53
Cowles R B.
Possible origin of dermal temperature regulation.
Evolution.
1958;
12
347-357
54
Satinoff E.
Neural organization and evolution of thermal regulation in mammals.
Science.
1978;
201
16-22
55
Heldmaier G.
Zitterfreie Wärmebildung und Körpergröße bei Säugetieren.
Z Vergl Physiol.
1971;
73
222-248
56 McIntyre J, Hull D, Nedergaard J, Cannon B. Thermoregulation. In: Gluckman PD, Heymann MA (eds) Perinatal and pediatric pathophysiology: A clinical perspective. London; Edward Arnold 1993: 357-368
57 Kleinebeckel D, Klussmann F W. Shivering. In: Schönbaum E, Lomax P (eds) Thermoregulation: Physiology and biochemistry. New York; Pergamon 1990: 235-253
58 Horwitz B A. Biochemical mechanisms and control of cold-induced cellular thermogenesis in placental mammals. In: Wang LCH (ed) Advances in comparative and environmental physiology. Vol. 4. Animal adaptation to cold. Berlin; Springer 1989: 83-116
59 Singer D, Hellige G. Vorbereitung und Steuerung der extrakorporalen Zirkulation aus physiologischer Sicht. In: Preuße CJ, Schulte HD (Hrsg) Extrakorporale Zirkulation - heute. Darmstadt; Steinkopff 1991: 1-29
60 Heath J E. The origins of thermoregulation. In: Drake ET (ed) Evolution and environment. New Haven; Yale University Press 1968: 259-278
61
Taylor C R, Maloiy G MO, Weibel E R, Lagman V A, Kamau J MZ, Seeherman H, Heglund N C.
Design of the mammalian respiratory system: Scaling maximum aerobic capacity to body mass - wild and domestic mammals.
Respir Physiol.
1981;
44
25-38
62 Taylor C R. Scaling limits of metabolism to body size: Implications for animal design. In: Taylor CR, Johansen K, Bolis L (eds) A companion to animal physiology. Cambridge; Cambridge University Press 1982: 161-170
63 Weibel E R. The pathway for oxygen: Structure and function in the mammalian respiratory system. Cambridge, Mass.; Harvard University Press 1984
64
Nicolau M C, Akaârir M, Gamundí A, González J, Rial R V.
Why we sleep: The evolutionary pathway to mammalian sleep.
Progr Neurobiol.
2000;
62
379-406
65
Berger R J.
Bioenergetic functions of sleep and activity rhythms and their possible relevance to aging.
Fed Proc.
1975;
34
97-102
66
Berger R J.
Slow wave sleep, shallow torpor and hibernation: Homologous states of diminished metabolism and body temperature.
Biol Psychol.
1984;
19
305-326
67 Davenport J. Animal life at low temperature. London; Chapman & Hall 1992
68 Irving L. Terrestrial animals in cold: Birds and mammals. In: Dill DB, Adolph EF, Wilber CG (eds) Adaptation to the environment (Handbook of physiology, section 4). Washington; Amer Physiol Soc 1964: 361-377
69
Irving L.
Heterothermous operation of warm-blooded animals.
Physiologist.
1959;
2
18-32
70
Irving L, Schmidt-Nielsen K, Abrahamsen N SB.
On the melting points of animal fats in cold climates.
Physiol Zool.
1957;
30
93-105
71 Schmidt-Nielsen K. Animal physiology: Adaptation and environment, 3rd ed. Chapt. 8. Temperature regulation. Cambridge; Cambridge University Press 1983: 249-305
72 Lyman C P, Willis J S, Malan A, Wang L CH. Hibernation and torpor in mammals and birds. New York; Academic Press 1982
73 Singer D. Der Winterschlaf als „Naturexperiment” zur Temperatursenkung und Umsatzreduktion bei homöothermen Organismen. Göttingen; Med Diss 1989
74 Heller HC, Musacchia XJ, Wang LCH (eds) Living in the cold: Physiological and biochemical adaptations. New York; Elsevier 1986
75 Malan A, Canguilhem B (eds). Living in the cold II. London, Paris; Libbey 1989
76 Heldmaier G, Klingenspor M (eds). Life in the cold. Berlin; Springer 2000
77
Kalter V G, Folk G E.
Humoral induction of mammalian hibernation.
Comp Biochem Physiol A.
1979;
63
7-13
78
Reeves R B.
An imidazole alphastat hypothesis for vertebrate acid-base regulation: Tissue carbon dioxide content and body temperature in bullfrogs.
Respir Physiol.
1972;
14
219-236
79
Park Y S, Hong S K.
Properties of toad skin Na-K-ATPase with special reference to effect of temperature.
Am J Physiol.
1976;
231
1356-1363
80 Rahn H, Prakash O (eds). Acid-base regulation and body temperature. Boston; Nijhoff 1985
81 Truchot J-P. Comparative aspects of extracellular acid-base balance (Zoophysiology, vol. 20). Berlin; Springer 1987
82 Malan A. Enzyme regulation, metabolic rate and acid-base state in hibernation. In: Gilles R (ed) Animals and environmental fitness: Physiological and biochemical aspects of adaptation and ecology. Vol. 1. Oxford; Pergamon 1980: 487-501
83 Malan A. pH as a control factor in hibernation. In: Heller HC, Musacchia XJ, Wang LCH (eds) Living in the cold: Physiological and biochemical adaptations. New York; Elsevier 1986: 61-70
84 Malan A. pH as a control factor of cell function in hibernation: The case of brown adipose tissue thermogenesis. In: Malan A, Canguilhem (eds) Living in the cold II. London, Paris; Libbey 1989: 333-340
85 Malan A. Acid-base regulation in hibernation and aestivation. In: Egginton S, Taylor EW, Raven JA (eds) Regulation of acid-base status in animals and plants (Soc Exp Biol Seminar Series 68). Cambridge; Cambridge University Press 1999: 324-339
86 Tyler-Jones R, Tayler E W. Back to basics: A plea for a fundamental reappraisal of the representation of acidity and basicity in biological solutions. In: Egginton S, Taylor EW, Raven JA (eds) Regulation of acid-base status in animals and plants (Soc Exp Biol Seminar Series 68). Cambridge; Cambridge University Press 1999: 353-371
87
Hering J P, Schröder T, Singer D, Hellige G.
Influence of pH management on hemodynamics and metabolism in moderate hypothermia.
J Thorac Cardiovasc Surg.
1992;
104
1388-1395
88
Tallman R D.
Acid-base regulation, alpha-stat, and the emperor's new clothes.
J Cardiothorac Vasc Anesth.
1997;
11
282-288
89
Aloia R C.
The role of membrane fatty acids in mammalian hibernation.
Fed Proc.
1980;
39
2974-2979
90
Van Breukelen F, Martin S L.
Molecular adaptations in mammalian hibernators: Unique adaptations or generalized responses?.
J Appl Physiol.
2002;
92
2640-2647
91 Kayser C. The physiology of natural hibernation. New York; Pergamon 1961
92
Geiser F.
Reduction of metabolism during hibernation and daily torpor in mammals and birds. Temperature effect or physiological inhibition?.
J comp Physiol B.
1988;
158
25-37
93
Heldmaier G, Ruf T.
Body temperature and metabolic rate during natural hypothermia in endotherms.
J comp Physiol B.
1992;
162
696-706
94 Singer D, Bach F, Bretschneider H J, Kuhn H-J. Metabolic size allometry and the limits to beneficial metabolic reduction: Hypothesis of a uniform specific minimal metabolic rate. In: Hochachka PW, Lutz PL, Sick T, Rosenthal M, van den Thillart G (eds) Surviving hypoxia: Mechanisms of control and adaptation. Boca Raton; CRC 1992: 447-458
95
Watts P D, Øritsland N A, Jonkel C, Ronald K.
Mammalian hibernation and the oxygen consumption of a denning black bear (Ursus americanus ).
Comp Biochem Physiol A.
1981;
69
121-123
96 Hochachka P W, Guppy M. Metabolic arrest and the control of biological time. Cambridge, Mass.; Harvard University Press 1987
97
Wieser W.
A distinction must be made between the ontogeny and the phylogeny of metabolism in order to understand the mass exponent of energy metabolism.
Respir Physiol.
1984;
55
1-9
98 Wieser W. Bioenergetik: Energietransformationen bei Organismen. Stuttgart; Thieme 1986
99
Bohr C.
Der respiratorische Stoffwechsel des Säugethierembryo.
Skand Arch Physiol.
1900;
10
413-424
100
Hasselbalch K A.
Über den respiratorischen Stoffwechsel des Hühnerembryos.
Skand Arch Physiol.
1900;
10
353-402
101
Hill J R, Rahimtulla K A.
Heat balance and the metabolic rate of new-born babies in relation to environmental temperature; and the effect of age and of weight on basal metabolic rate.
J Physiol.
1965;
180
239-265
102 Wilkie D R. Metabolism and body size. In: Pedley TJ (ed) Scale effects in animal locomotion. London; Academic Press 1977: 23-36
103 Rahn H. Comparison of embryonic development in birds and mammals: birth weight, time, and cost. In: Taylor CR, Johansen K, Bolis L (eds) A companion to animal physiology. Cabridge; Cambridge University Press 1982: 124-137
104 Paganelli C V, Rahn H. Adult and embryonic metabolism in birds and the role of shell conductance. In: Seymour RS (ed) Respiration and metabolism of embryonic vertebrates. Dordrecht; Dr W Junk 1984: 193-204
105 Schröder H J, Power G G. Basic aspects of fetal thermal homeostasis. In: Zeisberger E, Schönbaum E, Lomax P (eds) Thermal balance in health and disease: Recent basic research and clinical progress. Basel; Birkhäuser 1994: 235-249
106 Singer D. Anpassung an Unreife und Sauerstoffmangel in der Neonatalperiode: Vergleichende kalorimetrische Untersuchungen (Habil.-Schr. Univ. Göttingen 1998). Aachen; Shaker 2001
107 Singer D, Schiffmann H. Thermoregulatorische Besonderheiten des pädiatrischen Patienten. In: Weyland W, Braun U, Ketter D (Hrsg) Perioperative Hypothermie: Probleme, Prävention und Therapie. Ebelsbach; Aktiv Druck & Verlag 1997: 110-122
108
Singer D.
Thermometry and calorimetry in the neonatale: Recent advances in monitoring and research.
Thermochim Acta.
1998;
309
39-47
109
Fazekas J F, Alexander F AD, Himwich H E.
Tolerance of the newborn to anoxia.
Am J Physiol.
1941;
134
281-287
110
Singer D.
Neonatal tolerance to hypoxia.
Comp Biochem Physiol A.
1999;
123
221-234
111
Mortola J P.
How newborn mammals cope with hypoxia.
Respir Physiol.
1999;
116
95-103
112
Elsner R, Franklin D L, van Citters R L, Kenney D W.
Cardiovascular defense against asphyxia: Studies of circulatory responses to diving in aquatic and land animals clarify some reactions to asphyxia.
Science.
1966;
153
941-949
113
Elsner R, Gooden B.
Diving and asphyxia: A comparative study of animals and man.
Monogr Physiol Soc.
1983;
40
1-168
114 Hochachka P W. Living without oxygen: Closed and open systems in hypoxia tolerance. Chapt. 9. Diving marine mammals. Cambridge, Mass; Harvard University Press 1980: 145-169
115 Lutz P L, Hochachka P W. Hypoxia defense mechanisms: A comparison between diving reptiles and mammals. In: Hochachka PW, Lutz PL, Sick T, Rosenthal M, van den Thillard G (eds) Surviving hypoxia: Mechanisms of control and adaptation. Boca Raton; CRC 1993: 459-469
116
Sidi D, Kuipers J RG, Teitel D, Heymann M A, Rudolph A M.
Developmental changes in oxygenation and circulatory responses to hypoxemia in lambs.
Am J Physiol.
1983;
245
H674-H682
117
Fahey J T, Lister G.
Response to low cardiac output: Developmental differences in metabolism during oxygen deficit and recovery in lambs.
Pediatr Res.
1989;
26
180-187
118
Hill J.
The oxygen consumption of new-born and adult mammals: Its dependence on the oxygen tension in the inspired air and on the environmental temperature.
J Physiol.
1959;
149
346-373
119
Wood S C, Gonzales R.
Hypothermia in hypoxic animals: Mechanisms, mediators, and functional significance.
Comp Biochem Physiol.
1996;
113B
37-43
120
Rohlicek C V, Saiki C, Matsuoka T, Mortola J P.
Oxygen transport in conscious newborn dogs during hypoxic hypometabolism.
J Appl Physiol.
1998;
84
763-768
121
Gautier H.
Invited editorial on “oxygen transport in conscious newborn dogs during hypoxic hypometabolism”.
J Appl Physiol.
1998;
84
761-762
122
Tschischka K, Abele D, Pörtner H O.
Mitochondrial oxyconformity and cold adaptation in the polychaete Nereis pelagica and the bivalve Arctica islandica from the baltic and white seas.
J Exp Biol.
2000;
200
3355-3368
123
Boutilier R G, Donohoe P H, Tattersall G J, West T G.
Hypometabolic homeostasis in overwintering aquatic amphibians.
J Exp Biol.
1997;
200
387-400
124 Singer D, Ince A, Hallmann B. Oxygen supply, body size, and metabolic rate at the beginning of mammalian life. Thermochim Acta 2002: in press
125
Ar A, Mover H.
Oxygen tensions in developing embryos: System inefficiency or system requirement?.
Israel J Zool.
1994;
40
307-326
PD Dr. med. D. Singer
Universitäts-Kinderklinik
Josef-Schneider-Straße 2
97080 Würzburg
eMail: d.singer@mail.uni-wuerzburg.de