RSS-Feed abonnieren
DOI: 10.1055/s-2002-33418
Functional Relevance of Soluble TNF-α, Transmembrane TNF-α and TNF-Signal Transduction in Gastrointestinal Diseases with Special Reference to Inflammatory Bowel Diseases
Funktionelle Bedeutung von löslichem TNF, membranständigem TNF und TNF-Signaltransduktion bei gastrointestinalen Erkrankungen unter besonderer Berücksichtigung der chronisch entzündlichen DarmerkrankungenPublikationsverlauf
manuscript recieved: 11.12.2001
accepted after revision: 21.1.2002
Publikationsdatum:
19. August 2002 (online)

Zusammenfassung
Durch umfangreiche klinische und grundlagenwissenschaftliche Untersuchungen konnte die zentrale Rolle des Tumornekrosefaktors-α für die Pathogenese chronisch entzündlicher Erkrankungen wie der chronisch entzündlichen Darmerkrankungen nachgewiesen werden. Dieses hat zur Entwicklung viel versprechender therapeutischer Anti-TNF-Strategien geführt. Es gibt zunehmend Hinweise, dass TNF-α auch eine Schlüsselrolle bei anderen gastrointestinalen Erkrankungen spielt wie Helicobacter-pylori-Infektionen, Pankreatitis, Virushepatitis und toxischen Leberschäden. Die Wirkung von TNF-α auf zellulärer Ebene wird durch zwei Zelloberflächenrezeptoren, TNF-R1 (p60) und TNF-R2 (p80), vermittelt. Die Funktion dieser Rezeptoren und die folgenden intrazellulären Signaltransduktionswege sind eingehend in In-vitro-Systemen untersucht worden. Es ist zu erwarten, dass es besonders kritische Schritte in der TNF-Signaltransduktion gibt, die bei diesen Krankheiten fehlreguliert sind. Die Aufdeckung dieser möglichen Fehlregulationen könnte zu einem besseren Verständnis der Pathogenese dieser Krankheiten, vor allem der chronisch entzündlichen Darmerkrankungen, beitragen und möglicherweise neue, spezifischere therapeutische Ansatzpunkte liefern. Ziel dieser Arbeit ist es, eine Übersicht über den gegenwärtigen Kenntnisstand zur TNF-Signaltransduktion bei ausgewählten gastrointestinalen Erkrankungen unter besonderer Berücksichtigung der chronisch entzündlichen Darmerkrankungen zu geben. Schließlich sollen die Implikationen für zukünftige Forschungsrichtungen diskutiert werden.
Abstract
As a result of extensive clinical and basic research, the pivotal role of tumour necrosis factor (TNF) in the pathogenesis of chronic inflammatory diseases such as inflammatory bowel disease (IBD) has now generally been acknowledged. This has led to promising clinically effective anti-TNF-strategies. Of note, there is more and more evidence that TNF seems to play a key role in other gastrointestinal diseases including Helicobacter pylori infection, pancreatitis, viral hepatitis and toxic liver damage, too. The action of TNF at the cellular level is mediated by two cell surface receptors, TNF-R1 (p60) and TNF-R2 (p80). The function of these receptors and the downstream intracellular signal transduction pathway have been extensively studied in vitro and it can be expected, that there are critically important steps in TNF-signal transduction that might be dysregulated in these disease states. Their elucidation could lead to a better understanding of the pathogenesis of these diseases, in particular IBD and potentially reveal new, more specific therapeutic targets. Objective of this review is to give an overview about the current knowledge on TNF signal transduction in relationship to selected examples of important gastrointestinal disorders with special focus on IBD. Finally, the implications for future research efforts will be discussed.
Schlüsselwörter
TNF-Signaltransduktion - gastrointestinale Erkrankungen - chronisch entzündliche Darmerkrankungen
Key words
TNF-α - Signal Transduction - Gastrointestinal Disorders - Inflammatory Bowel Disease
References
- 1
Aversa G, Punnonen J, de Vries J E.
The 26-kD transmembrane form of tumor necrosis factor alpha on activated CD4+ T cell
clones provides a costimulatory signal for human B cell activation.
J Exp Med.
1993;
177 (no. 6)
1575
MissingFormLabel
- 2
Tang P, Hung M C, Klostergaard J.
Himan pro-tumor necrosis factor is a homotrimer.
Biochemstry.
1996;
35 (no. 25)
8216
MissingFormLabel
- 3
Beutler B, Van Huffel C.
An evolutionary and functional approach to the TNF receptor/ligand family.
Ann N Y Acad Sci.
1994;
730
118
MissingFormLabel
- 4
Spies T, Blanck G, Bresnahan M, Sands J, Strominger J L.
A new cluster of genes within the human major histocompatibility complex.
Science.
1989;
243 (no. 4888)
214
MissingFormLabel
- 5
Black R A, Rauch C T, Kozlosky C J. et al .
A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells.
Nature.
1997;
385 (no. 6618)
729
MissingFormLabel
- 6
Moss M L, Jin S L, Milla M E. et al .
Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis
factor-alpha.
Nature.
1997;
385 (no. 6618)
733
MissingFormLabel
- 7
Perez C, Albert I, DeFay K. et al .
A nonsecretable cell surface mutant of tumor necrosis factor (TNF) kills by cell-to-cell
contact.
Cell.
1990;
63 (no. 2)
251
MissingFormLabel
- 8
Eck M J, Beutler B, Kuo G, Merryweather J P, Sprang S R.
Crystallization of trimeric recombinant human tumor necrosis factor (cachectin).
J Biol Chem.
198;
263 (no. 26)
12816
MissingFormLabel
- 9
Han J, Thompson P, Beutler B.
Dexamethasone and pentoxifylline inhibit endotoxin-induced cachectin/tumor necrosis
factor synthesis at separate points in the signaling pathway.
J Exp Med.
1990;
172 (no. 1)
391
MissingFormLabel
- 10
Caput D, Beutler B, Hartog K. et al .
Identification of a common nucleotide sequence in the 3’-untranslated region of mRNA
molecules specifying inflammatory mediators.
Proc Natl Acad Sci U S A.
1986;
83 (no. 6)
1670
MissingFormLabel
- 11
Brockhaus M, Schoenfeld H J, Schlaeger E J. et al .
Identification of two types of tumor necrosis factor receptors on human cell lines
by monoclonal antibodies.
Proc Natl Acad Sci U S A.
1990;
87 (no. 8)
3127
MissingFormLabel
- 12
Schall T J, Lewis M, Koller K J. et al .
Molecular cloning and expression of a receptor for human tumor necrosis factor.
Cell.
1990;
61 (no. 2)
361
MissingFormLabel
- 13
Baker E, Chen L Z, Smith C A. et al .
Chromosomal location of the human tumor necrosis factor receptor genes.
Cytogenet Cell Genet.
1991;
57 (no. 2-3)
117
MissingFormLabel
- 14
Fuchs P, Strehl S, Dworzak M, Himmler A, Ambros P F.
Structure of the human TNF receptor 1 (p60) gene (TNFR1) and localization to chromosome
12p13 [corrected].
Genomics.
1992;
13 (no. 1)
219
MissingFormLabel
- 15
Thoma B, Grell M, Pfizenmaier K, Scheurich P.
Identification of a 60-kD tumor necrosis factor (TNF) receptor as the major signal
transducing component in TNF responses.
J Exp Med.
1990;
172 (no. 4)
1019
MissingFormLabel
- 16
Grell M, Douni E, Wajant H. et al .
The transmembrane form of tumor necrosis factor is the prime activating ligand of
the 80 kDa tumor necrosis factor receptor.
Cell.
1995;
83 (no. 5)
793
MissingFormLabel
- 17
Weiss T, Grell M, Hessabi B. et al .
Enhancement of TNF receptor p60-mediated cytotoxicity by TNF receptor p80: requirement
of the TNF receptor-associated factor-2 binding site.
J Immunol.
1997;
158 (no. 5)
2398
MissingFormLabel
- 18
Haas E, Grell M, Wajant H, Scheurich P.
Continuous autotropic signaling by membrane-expressed tumor necrosis factor.
J Biol Chem.
1999;
274 (no. 25)
18107
MissingFormLabel
- 19
Alexopoulou L, Pasparakis M, Kollias G.
A murine transmembrane tumor necrosis factor (TNF) transgene induces arthritis by
cooperative p55/p75 TNF receptor signaling.
Eur J Immunol.
1997;
27 (no. 10)
2588
MissingFormLabel
- 20
Arch R H, Gedrich R W, Thompson C B.
Tumor necrosis factor receptor-associated factors (TRAFs) - a family of adapter proteins
that regulates life and death.
Genes Dev.
1998;
12 (no. 18)
2821
MissingFormLabel
- 21
Chinnaiyan A M, O’Rourke K, Tewari M, Dixit V M.
FADD, a novel death domain-containing protein, interacts with the death domain of
Fas and initiates apoptosis.
Cell.
1995;
81 (no. 4)
505
MissingFormLabel
- 22
Hsu H, Xiong J, Goeddel D V.
The TNF receptor 1-associated protein TRADD signals cell death and NF- kappa B activation.
Cell.
1995;
81 (no. 4)
495
MissingFormLabel
- 23
Hsu H, Shu H B, Pan M G, Goeddel D V.
TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal
transduction pathways.
Cell.
1996;
84 (no. 2)
299
MissingFormLabel
- 24
Engelmann H, Holtmann H, Brakebusch C. et al .
Antibodies to a soluble form of a tumor necrosis factor (TNF) receptor have TNF-like
activity.
J Biol Chem.
1990;
265 (no. 24)
14497
MissingFormLabel
- 25
Banner D W, D’Arcy A, Janes W. et al .
Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex:
implications for TNF receptor activation.
Cell.
1993;
73 (no. 3)
431
MissingFormLabel
- 26
Bazzoni F, Alejos E, Beutler B.
Chimeric tumor necrosis factor receptors with constitutive signaling activity.
Proc Natl Acad Sci USA.
1995;
92 (no. 12)
5376
MissingFormLabel
- 27
Rothe M, Wong S C, Henzel W J, Goeddel D V.
A novel family of putative signal transducers associated with the cytoplasmic domain
of the 75 kDa tumor necrosis factor receptor.
Cell.
1994;
78 (no. 4)
681
MissingFormLabel
- 28
Takeuchi M, Rothe M, Goeddel D V.
Anatomy of TRAF2. Distinct domains for nuclear factor-kappaB activation and association
with tumor necrosis factor signaling proteins.
J Biol Chem.
1996;
271 (no. 33)
19935
MissingFormLabel
- 29
Auphan N, DiDonato J A, Rosette C, Helmberg A, Karin M.
Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction
of I kappa B synthesis.
Science.
1995;
270 (no. 5234)
286
MissingFormLabel
- 30
Neurath M F, Becker C, Barbulescu K.
Role of NF-kappaB in immune and inflammatory responses in the gut.
Gut.
1998;
43 (no. 6)
856
MissingFormLabel
- 31
Yin M J, Yamamoto Y, Gaynor R B.
The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B
kinase-beta.
Nature.
1998;
396 (no. 6706)
77
MissingFormLabel
- 32
Wang C Y, Mayo M W, Korneluk R G, Goeddel D V, Baldwin A S Jr.
NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c- IAP2 to suppress
caspase-8 activation.
Science.
1998;
281 (no. 5383)
1680
MissingFormLabel
- 33
Rothe M, Xiong J, Shu H B, Williamson K, Goddard A, Goeddel D V.
I-TRAF is a novel TRAF-interacting protein that regulates TRAF-mediated signal transduction.
Proc Natl Acad Sci U S A.
1996;
93 (no. 16)
8241
MissingFormLabel
- 34
Opipari A W Jr, Boguski M S, Dixit V M.
The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger
protein.
J Biol Chem.
1990;
265(no. 25)
14705
MissingFormLabel
- 35
Song H Y, Rothe M, Goeddel D V.
The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2
and inhibits NF-kappaB activation.
Proc Natl Acad Sci U S A.
1996;
93 (no. 13)
6721
MissingFormLabel
- 36
Darnay B G, Singh S, Aggarwal B B.
The p80 TNF receptor-associated kinase (p80TRAK) associates with residues 354 - 397
of the p80 cytoplasmic domain: similarity to casein kinase.
FEBS Lett.
1997;
406 (no. 1-2)
101
MissingFormLabel
- 37
Darnay B G, Reddy S A, Aggarwal B B.
Identification of a protein kinase associated with the cytoplasmic domain of the p60
tumor necrosis factor receptor.
J Biol Chem.
1994;
269 (no. 32)
20299
MissingFormLabel
- 38
Tartaglia L A, Ayres T M, Wong G H, Goeddel D V.
A novel domain within the 55 kd TNF receptor signals cell death.
Cell.
1993;
74 (no. 5)
845
MissingFormLabel
- 39
Boldin M P, Varfolomeev E E, Pancer Z. et al .
A novel protein that interacts with the death domain of Fas/APO1 contains a sequence
motif related to the death domain.
J Biol Chem.
1995;
270 (no. 14)
7795
MissingFormLabel
- 40
Stanger B Z, Leder P, Lee T H, Kim E, Seed B.
RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95)
in yeast and causes cell death.
Cell.
1995;
81 (no. 4)
513
MissingFormLabel
- 41
Hsu H, Huang J, Shu H B, Baichwal V, Goeddel D V.
TNF-dependent recruitment of the protein kinase RIP to the TNF receptor- 1 signaling
complex.
Immunity.
1996;
4 (no. 4)
387
MissingFormLabel
- 42
Yeh W C, Pompa J L, McCurrach M E. et al .
FADD: essential for embryo development and signaling from some, but not all, inducers
of apoptosis.
Science.
1998;
279 (no. 5358)
1954
MissingFormLabel
- 43
Muzio M, Chinnaiyan A M, Kischkel F C. et al .
FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1)
death-inducing signaling complex.
Cell.
1996;
85 (no. 6)
817
MissingFormLabel
- 44
Rothe M, Sarma V, Dixit V M, Goeddel D V.
TRAF2-mediated activation of NF-kappa B by TNF receptor 2 and CD40.
Science.
1995;
269 (no. 5229)
1424
MissingFormLabel
- 45
Lee S Y, Kaufman D R, Mora A L. et al .
Stimulus-dependent synergism of the antiapoptotic tumor necrosis factor receptor-associated
factor 2 (TRAF2) and nuclear factor kappaB pathways.
J Exp Med.
1998;
188 (no. 7)
1381
MissingFormLabel
- 46
Yeh W C, Shahinian A, Speiser D. et al .
Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced
cell death in TRAF2-deficient mice.
Immunity.
1997;
7 (no. 5)
715
MissingFormLabel
- 47
Schutze S, Berkovic D, Tomsing O, Unger C, Kronke M.
Tumor necrosis factor induces rapid production of 1’2’diacylglycerol by a phosphatidylcholine-specific
phospholipase C.
J Exp Med.
1991;
174 (no. 5)
975
MissingFormLabel
- 48
Liu J, Mathias S, Yang Z, Kolesnick R N.
Renaturation and tumor necrosis factor-alpha stimulation of a 97-kDa ceramide-activated
protein kinase.
J Biol Chem.
1994;
269 (no. 4)
3047
MissingFormLabel
- 49
Blenis J.
Signal transduction via the MAP kinases: proceed at your own RSK.
Proc Natl Acad Sci U S A.
1993;
90 (no. 13)
5889
MissingFormLabel
- 50 Beutler B. Tumor necrosis factors: the molecules and their emerging role in medicine. New York; Raven Press 1992
MissingFormLabel
- 51
Tracey K J, Cerami A.
Tumor necrosis factor: a pleiotropic cytokine and therapeutic target.
Annu Rev Med.
1994;
45 (no. 9)
491
MissingFormLabel
- 52
Carswell E A, Old L J, Kassel R L. et al .
An endotoxin-induced serum factor that causes necrosis of tumors.
Proc Natl Acad Sci U S A.
1975;
72
3666
MissingFormLabel
- 53
Rothe J, Lesslauer W, Lotscher H. et al .
Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF- mediated
toxicity but highly susceptible to infection by Listeria monocytogenes.
Nature.
1993;
364 (no. 6440)
798
MissingFormLabel
- 54
Marino M W, Dunn A, Grail D. et al .
Characterization of tumor necrosis factor-deficient mice.
Proc Natl Acad Sci USA.
1997;
94 (no. 15)
8093
MissingFormLabel
- 55
Tracey K J, Cerami A.
Tumor necrosis factor, other cytokines and disease.
Annu Rev Cell Biol.
1993;
9 (no. 4)
317
MissingFormLabel
- 56
Pasparakis M, Alexopoulou L, Episkopou V, Kollias G.
Immune and inflammatory responses in TNF alpha-deficient mice: a critical requirement
for TNF alpha in the formation of primary B cell follicles, follicular dendritic cell
networks and germinal centers, and in the maturation of the humoral immune response.
J Exp Med.
1996;
184
1397
MissingFormLabel
- 57
Gamble J R, Harlan J M, Klebanoff S J, Vadas M A.
Stimulation of the adherence of neutrophils to umbilical vein endothelium by human
recombinant tumor necrosis factor.
Proc Natl Acad Sci USA.
1985;
82 (no. 24)
8667
MissingFormLabel
- 58
Carlos T M, Harlan J M.
Leukocyte-endothelial adhesion molecules.
Blood.
1994;
84 (no. 7)
2068
MissingFormLabel
- 59
Kuijpers T W, Hakkert B C, Hart M H, Roos D.
Neutrophil migration across monolayers of cytokine-prestimulated endothelial cells:
a role for platelet-activating factor and IL-8.
J Cell Biol.
1992;
117 (no. 3)
565
MissingFormLabel
- 60
Paleolog E M, Delasalle S A, Buurman W A, Feldmann M.
Functional activities of receptors for tumor necrosis factor-alpha on human vascular
endothelial cells.
Blood.
1994;
84 (no. 8)
2578
MissingFormLabel
- 61
Levi M, ten C ate H, van der Poll T, van Deventer S J.
Pathogenesis of disseminated intravascular coagulation in sepsis.
Jama.
1993;
270 (no. 8)
975
MissingFormLabel
- 62
van der Poll T, Levi M, Buller H R. et al .
Fibrinolytic response to tumor necrosis factor in healthy subjects.
J Exp Med.
1991;
174 (no. 3)
729
MissingFormLabel
- 63
van der Poll T, Jansen J, van Leenen D. et al .
Release of soluble receptors for tumor necrosis factor in clinical sepsis and experimental
endotoxemia.
J Infect Dis.
1993;
168 (no. 4)
955
MissingFormLabel
- 64
Tracey K J.
Tumor necrosis factor (cachectin) in the biology of septic shock syndrome.
Circ Shock.
1991;
35 (no. 2)
123
MissingFormLabel
- 65
Tracey K J, Fong Y, Hesse D G. et al .
Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia.
Nature.
19987;
330 (no. 6149) (no. 3)
662
MissingFormLabel
- 66
Abraham E, Anzueto A, Gutierrez G. et al .
Double-blind randomised controlled trial of monoclonal antibody to human tumour necrosis
factor in treatment of septic shock. NORASEPT II Study Group.
Lancet.
1998;
351 (no. 9107)
929
MissingFormLabel
- 67
Asher A, Mule J J, Reichert C M, Shiloni E, Rosenberg S A.
Studies on the anti-tumor efficacy of systemically administered recombinant tumor
necrosis factor against several murine tumors in vivo.
J Immunol.
1987;
138
963
MissingFormLabel
- 68
Lejeune F, Bauer J, Leyvraz S, Lienard D.
Disseminated melanoma, preclinical therapeutic studies, clinical trials, and patient
treatment.
Curr Opin Oncol.
1993;
5 (no. 2)
390
MissingFormLabel
- 69 Clauss M, Ryan J, Stern D. Modulation of endothelial cell hemostatic properties by TNF: Insight into the role
endothelium in the host response to inflammatory stimuli. Beutler B Tumor Necrosis Factors: The Molecules and Their Emerging Role in Medicine New York; Raven Press 1992: 49 pp.
MissingFormLabel
- 70
Nawroth P, Handley D, Matsueda G. et al .
Tumor necrosis factor/ cachectin-induced intravascular fibrin formation in meth A
fibrosarcomas.
J Exp Med.
1988;
168 (no. 2)
637
MissingFormLabel
- 71
Urban J L, Shepard H M, Rothstein J L, Sugarman B J, Schreiber H.
Tumor necrosis factor: a potent effector molecule for tumor cell killing by activated
macrophages.
Proc Natl Acad Sci U S A.
1986;
83 (no. 14)
5233
MissingFormLabel
- 72
Keffer J, Probert L, Cazlaris H. et al .
Transgenic mice expressing human tumour necrosis factor: a predictive genetic model
of arthritis.
Embo J.
1991;
10 (no. 13) (no. 8930)
4025
MissingFormLabel
- 73
Elliott M J, Maini R N, Feldmann M. et al .
Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis
factor alpha (cA2) versus placebo in rheumatoid arthritis.
Lancet.
1994;
344
1105
MissingFormLabel
- 74
Moreland L W, Baumgartner S W, Schiff M H. et al .
Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor
(p75)-Fc fusion protein.
N Engl J Med.
1997;
337 (no. 3)
141
MissingFormLabel
- 75
Le Hir M, Bluethmann H, Kosco-Vilbois M H. et al .
Tumor necrosis factor receptor-1 signaling is required for differentiation of follicular
dendritic cells, germinal center formation, and full antibody responses.
J Inflamm.
1995;
47 (no. 1 - 2) (no. 4)
76
MissingFormLabel
- 76
Pfeffer K, Matsuyama T, Kundig T M. et al .
Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic
shock, yet succumb to L. monocytogenes infection.
Cell.
1993;
73 (no. 3)
457
MissingFormLabel
- 77
Neumann B, Machleidt T, Lifka A. et al .
Crucial role of 55-kilodalton TNF receptor in TNF-induced adhesion molecule expression
and leukocyte organ infiltration.
J Immunol.
1996;
156
1587
MissingFormLabel
- 78
Erickson S L, de Sauvage F J, Kikly K. et al .
Decreased sensitivity to tumour-necrosis factor but normal T-cell development in TNF
receptor-2-deficient mice.
Nature.
1994;
372 (no. 6506)
560
MissingFormLabel
- 79
Lucas R, Juillard P, Decoster E. et al .
Crucial role of tumor necrosis factor (TNF) receptor 2 and membrane- bound TNF in
experimental cerebral malaria.
Eur J Immunol.
1997;
27 (no. 7)
1719
MissingFormLabel
- 80
Douni E, Kollias G.
A critical role of the p75 tumor necrosis factor receptor (p75TNF-R) in organ inflammation
independent of TNF, lymphotoxin alpha, or the p55TNF- R.
J Exp Med.
1998;
188 (no. 7)
1343
MissingFormLabel
- 81
Schroder J, Stuber F, Gallati H, Schade F U, Kremer B.
Pattern of soluble TNF receptors I and II in sepsis.
Infection.
1995;
23 (no. 3)
143
MissingFormLabel
- 82
Marinos G, Naoumov N V, Rossol S. et al .
Tumor necrosis factor receptors in patients with chronic hepatitis B virus infection.
Gastroenterology.
1995;
108 (no. 5)
1453
MissingFormLabel
- 83
de Beaux A C, Ross J A, Maingay J P, Fearon K C, Carter D C.
Proinflammatory cytokine release by peripheral blood mononuclear cells from patients
with acute pancreatitis.
Br J Surg.
1996;
83 (no. 8)
1071
MissingFormLabel
- 84
Gabay C, Cakir N, Moral F. et al .
Circulating levels of tumor necrosis factor soluble receptors in systemic lupus erythematosus
are significantly higher than in other rheumatic diseases and correlate with disease
activity.
J Rheumatol.
1997;
24 (no. 2)
303
MissingFormLabel
- 85
Godfried M H, van der Poll T, Jansen J. et al .
Soluble receptors for tumour necrosis factor: a putative marker of disease progression
in HIV infection.
Aids.
1993;
7 (no. 1)
33
MissingFormLabel
- 86
Kusters S, Tiegs G, Alexopoulou L. et al .
In vivo evidence for a functional role of both tumor necrosis factor (TNF) receptors
and transmembrane TNF in experimental hepatitis.
Eur J Immunol.
1997;
27 (no. 11)
2870
MissingFormLabel
- 87
Moss S F, Legon S, Davies J, Calam J.
Cytokine gene expression in Helicobacter pylori associated antral gastritis.
Gut.
1994;
35 (no. 11)
1567
MissingFormLabel
- 88
Crabtree J E, Shallcross Z M, Heatley R V, Wyatt J I.
Mucosal tumour necrosis factor alpha and interleukin-6 in patients with Helicobacter
pylori associated gastritis.
Gut.
1991;
32 (no. 12)
1473
MissingFormLabel
- 89
Ishihara S, Fukuda R, Fukumoto S.
Cytokine gene expression in the gastric mucosa: its role in chronic gastritis.
J Gastroenterol.
1996;
31 (no. 4)
485
MissingFormLabel
- 90
Houghton J, Macera-Bloch L S, Harrison L, Kim K H, Korah R M.
Tumor necrosis factor alpha and interleukin 1beta up-regulate gastric mucosal Fas
antigen expression in Helicobacter pylori infection.
Infect Immun.
2000;
68 (no. 3)
1189
MissingFormLabel
- 91
Rudi J, Kuck D, Strand S. et al .
Involvement of the CD95 (APO-1/Fas) receptor and ligand system in Helicobacter pylori-induced
gastric epithelial apoptosis.
J Clin Invest.
1998;
102 (no. 8)
1506
MissingFormLabel
- 92
Santucci L, Fiorucci S, Giansanti M. et al .
Pentoxifylline prevents indomethacin induced acute gastric mucosal damage in rats:
role of tumour necrosis factor alpha.
Gut.
1994;
35 (no. 7)
909
MissingFormLabel
- 93
Hermann G E, Tovar C A, Rogers R C.
Induction of endogenous tumor necrosis factor-alpha: suppression of centrally stimulated
gastric motility.
Am J Physiol.
1999;
276 (no. 1 Pt 2)
R59
MissingFormLabel
- 94
Kiyama T, Onda M, Tokunaga A. et al .
The presence of tumor necrosis factor-alpha and its antibody in the sera of cachexic
patients with gastrointestinal cancer.
Surg Today.
1994;
24 (no. 8)
759
MissingFormLabel
- 95
Ohno M, Kato M, Nakamura T, Saitoh Y.
Gene expression for tumor necrosis factor alpha and its production in gastric cancer
patients.
Jpn J Cancer Res.
1994;
85 (no. 10)
1029
MissingFormLabel
- 96
Beutler B, van Huffel C.
Unraveling function in the TNF ligand and receptor families.
Science.
1994;
264 (no. 5159)
667
MissingFormLabel
- 97
Norman J G, Fink G W, Denham W. et al .
Tissue-specific cytokine production during experimental acute pancreatitis. A probable
mechanism for distant organ dysfunction.
Dig Dis Sci.
1997;
42 (no. 8) (no. 5)
1783
MissingFormLabel
- 98
Blanchard 2nd J A, Barve S, Joshi-Barve S, Talwalker R, Gates Jr L K.
Cytokine production by CAPAN-1 and CAPAN-2 cell lines.
Dig Dis Sci.
2000;
45
927
MissingFormLabel
- 99
Gukovskaya A S, Gukovsky I, Zaninovic V. et al .
Pancreatic acinar cells produce, release, and respond to tumor necrosis factor-alpha.
Role in regulating cell death and pancreatitis.
J Clin Invest.
1997;
100 (no. 7) (no. 1)
1853
MissingFormLabel
- 100
Lundberg A H, Eubanks 3rd J W, Henry J. et al .
Trypsin stimulates production of cytokines from peritoneal macrophages in vitro and
in vivo.
Pancreas.
2000;
21
41
MissingFormLabel
- 101
Steinle A U, Weidenbach H, Wagner M, Adler G, Schmid R M.
NF-kappaB/Rel activation in cerulein pancreatitis.
Gastroenterology.
1999;
116 (no. 2)
420
MissingFormLabel
- 102
Ishizuka N, Yagui K, Tokuyama Y. et al .
Tumor necrosis factor alpha signaling pathway and apoptosis in pancreatic beta cells.
Metabolism.
1999;
48 (no. 12)
1485
MissingFormLabel
- 103
Stephens L A, Thomas H E, Ming L. et al .
Tumor necrosis factor-alpha-activated cell death pathways in NIT-1 insulinoma cells
and primary pancreatic beta cells.
Endocrinology.
1999;
140 (no. 7)
3219
MissingFormLabel
- 104
Sheron N, Lau J, Daniels H. et al .
Increased production of tumour necrosis factor alpha in chronic hepatitis B virus
infection.
J Hepatol.
1991;
12 (no. 2)
241
MissingFormLabel
- 105
Larrea E, Garcia N, Qian C, Civeira M P, Prieto J.
Tumor necrosis factor alpha gene expression and the response to interferon in chronic
hepatitis C.
Hepatology.
1996;
23 (no. 2)
210
MissingFormLabel
- 106
Kallinowski B, Haseroth K, Marinos G. et al .
Induction of tumour necrosis factor (TNF) receptor type p55 and p75 in patients with
chronic hepatitis C virus (HCV) infection.
Clin Exp Immunol.
1998;
111 (no. 2)
269
MissingFormLabel
- 107
Gonzalez-Amaro R, Garcia-Monzon C, Garcia-Buey L. et al .
Induction of tumor necrosis factor alpha production by human hepatocytes in chronic
viral hepatitis.
J Exp Med.
1994;
179 (no. 3)
841
MissingFormLabel
- 108
Ruby J, Bluethmann H, Peschon J J.
Antiviral activity of tumor necrosis factor (TNF) is mediated via p55 and p75 TNF
receptors.
J Exp Med.
1997;
186 (no. 9)
1591
MissingFormLabel
- 109
Zhu N, Khoshnan A, Schneider R. et al .
Hepatitis C virus core protein binds to the cytoplasmic domain of tumor necrosis factor
(TNF) receptor 1 and enhances TNF-induced apoptosis.
J Virol.
1998;
72 (no. 5)
3691
MissingFormLabel
- 110
Marusawa H, Hijikata M, Chiba T, Shimotohno K.
Hepatitis C virus core protein inhibits Fas- and tumor necrosis factor alpha-mediated
apoptosis via NF-kappaB activation.
J Virol.
1999;
73 (no. 6)
4713
MissingFormLabel
- 111
Marusawa H, Hijikata M, Watashi K, Chiba T, Shimotohno K.
Regulation of Fas-mediated apoptosis by NF-kappaB activity in human hepatocyte derived
cell lines.
Microbiol Immunol.
2001;
45 (no. 6)
483
MissingFormLabel
- 112
Tai D I, Tsai S L, Chen Y M. et al .
Activation of nuclear factor kappaB in hepatitis C virus infection: implications for
pathogenesis and hepatocarcinogenesis.
Hepatology.
2000;
31 (no. 3)
656
MissingFormLabel
- 113
Bernal W, Moloney M, Underhill J, Donaldson P T.
Association of tumor necrosis factor polymorphism with primary sclerosing cholangitis.
J Hepatol.
1999;
30 (no. 2)
237
MissingFormLabel
- 114
Cookson S, Constantini P K, Clare M. et al .
Frequency and nature of cytokine gene polymorphisms in type 1 autoimmune hepatitis.
Hepatology.
1999;
30 (no. 4)
851
MissingFormLabel
- 115
Czaja A J, Cookson S, Constantini P K. et al .
Cytokine polymorphisms associated with clinical features and treatment outcome in
type 1 autoimmune hepatitis.
Gastroenterology.
1999;
117 (no. 3)
645
MissingFormLabel
- 116
Gordon M A, Oppenheim E, Camp N J. et al .
Primary biliary cirrhosis shows association with genetic polymorphism of tumour necrosis
factor alpha promoter region.
J Hepatol.
1999;
31 (no. 2)
242
MissingFormLabel
- 117
Grove J, Daly A K, Bassendine M F, Day C P.
Association of a tumor necrosis factor promoter polymorphism with susceptibility to
alcoholic steatohepatitis.
Hepatology.
1997;
26 (no. 1)
143
MissingFormLabel
- 118
Spengler U, Moller A, Jung M C. et al .
T lymphocytes from patients with primary biliary cirrhosis produce reduced amounts
of lymphotoxin, tumor necrosis factor and interferon-gamma upon mitogen stimulation.
J Hepatol.
1992;
15 (no. 1 - 2)
129
MissingFormLabel
- 119
Naveau S, Emilie D, Balian A. et al .
Plasma levels of soluble tumor necrosis factor receptors p55 and p75 in patients with
alcoholic liver disease of increasing severity.
J Hepatol.
1998;
28 (no. 5)
778
MissingFormLabel
- 120
Iimuro Y, Gallucci R M, Luster M I, Kono H, Thurman R G.
Antibodies to tumor necrosis factor alfa attenuate hepatic necrosis and inflammation
caused by chronic exposure to ethanol in the rat.
Hepatology.
1997;
26 (no. 6)
1530
MissingFormLabel
- 121
Hadziselimovic F, Emmons L R, Gallati H.
Soluble tumour necrosis factor receptors p55 and p75 in the urine monitor disease
activity and the efficacy of treatment of inflammatory bowel disease.
Gut.
1995;
37 (no. 2)
260
MissingFormLabel
- 122
Braegger C P, Nicholls S, Murch S H, Stephens S, MacDonald T T.
Tumour necrosis factor alpha in stool as a marker of intestinal inflammation.
Lancet.
1992;
339 (no. 8785)
89
MissingFormLabel
- 123
Murch S H, Braegger C P, Walker-Smith J A, MacDonald T T.
Location of tumour necrosis factor alpha by immunohistochemistry in chronic inflammatory
bowel disease.
Gut.
1993;
34 (no. 12)
1705
MissingFormLabel
- 124
Reinecker H C, Steffen M, Witthoeft T. et al .
Enhanced secretion of tumour necrosis factor-alpha, IL-6, and IL-1 beta by isolated
lamina propria mononuclear cells from patients with ulcerative colitis and Crohn’s
disease.
Clin Exp Immunol.
1993;
94 (no. 1)
174
MissingFormLabel
- 125
Reimund J M, Wittersheim C, Dumont S. et al .
Mucosal inflammatory cytokine production by intestinal biopsies in patients with ulcerative
colitis and Crohn’s disease.
J Clin Immunol.
1996;
16 (no. 3)
144
MissingFormLabel
- 126
Plevy S E, Landers C J, Prehn J. et al .
A role for TNF-alpha and mucosal T helper-1 cytokines in the pathogenesis of Crohn’s
disease.
J Immunol.
1997;
159 (no. 12)
6276
MissingFormLabel
- 127
Pender S L, Breese E J, Gunther U. et al .
Suppression of T cell-mediated injury in human gut by interleukin 10: role of matrix
metalloproteinases.
Gastroenterology.
1998;
115 (no. 3)
573
MissingFormLabel
- 128
Monteleone G, Biancone L, Marasco R. et al .
Interleukin 12 is expressed and actively released by Crohn’s disease intestinal lamina
propria mononuclear cells.
Gastroenterology.
1997;
112 (no. 4)
1169
MissingFormLabel
- 129
Monteleone G, MacDonald T T, Wathen N C, Pallone F, Pender S L.
Enhancing Lamina propria Th1 cell responses with interleukin 12 produces severe tissue
injury.
Gastroenterology.
1999;
117 (no. 5)
1069
MissingFormLabel
- 130
Elson C O, Sartor R B, Tennyson G S, Riddell R H.
Experimental models of inflammatory bowel disease.
Gastroenterology.
1995;
109 (no. 4)
1344
MissingFormLabel
- 131
Neurath M F, Fuss I, Pasparakis M. et al .
Predominant pathogenic role of tumor necrosis factor in experimental colitis in mice.
Eur J Immunol.
1997;
27 (no. 7)
1743
MissingFormLabel
- 132
Okayasu I, Hatakeyama S, Yamada M. et al .
A novel method in the induction of reliable experimental acute and chronic ulcerative
colitis in mice.
Gastroenterology.
1990;
98 (no. 3)
694
MissingFormLabel
- 133
Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W.
Interleukin-10-deficient mice develop chronic enterocolitis.
Cell.
1993;
75 (no. 2)
263
MissingFormLabel
- 134
Powrie F, Leach M W, Mauze S, Caddle L B, Coffman R L.
Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal
inflammation in C. B-17 scid mice.
Int Immunol.
1993;
5 (no. 11) (no. 5)
1461
MissingFormLabel
- 135
Atreya R, Mudter J, Finotto S. et al .
Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis
in chronic intestinal inflammation: evidence in crohn disease and experimental colitis
in vivo.
Nat Med.
2000;
6
583
MissingFormLabel
- 137
Corazza N, Eichenberger S, Eugster H P, Mueller C.
Nonlymphocyte-derived tumor necrosis factor is required for induction of colitis in
recombination activating gene (RAG)2(-/-) mice upon transfer of CD4(+)CD45RB(hi) T
cells.
J Exp Med.
1999;
190 (no. 10)
1479
MissingFormLabel
- 136
Kojouharoff G, Hans W, Obermeier F. et al .
Neutralization of tumour necrosis factor (TNF) but not of IL-1 reduces inflammation
in chronic dextran sulphate sodium-induced colitis in mice.
Clin Exp Immunol.
1997;
107 (no. 2)
353
MissingFormLabel
- 138
Kontoyiannis D, Pasparakis M, Pizarro T T, Cominelli F, Kollias G.
Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU- rich elements:
implications for joint and gut-associated immunopathologies.
Immunity.
1999;
10 (no. 3)
387
MissingFormLabel
- 139
Schreiber S, Heinig T, Thiele H G, Raedler A.
Immunoregulatory role of interleukin 10 in patients with inflammatory bowel disease.
Gastroenterology.
1995;
108 (no. 5)
1434
MissingFormLabel
- 140
Sands B E, Bank S, Sninsky C A. et al .
Preliminary evaluation of safety and activity of recombinant human interleukin 11
in patients with active Crohn’s disease.
Gastroenterology.
1999;
117 (no. 1)
58
MissingFormLabel
- 141
Sumer N, Palabiyikoglu M.
Induction of remission by interferon-alpha in patients with chronic active ulcerative
colitis.
Eur J Gastroenterol Hepatol.
1995;
7 (no. 7)
597
MissingFormLabel
- 142
Stack W A, Mann S D, Roy A J. et al .
Randomised controlled trial of CDP571 antibody to tumour necrosis factor-alpha in
Crohn’s disease.
Lancet.
1997;
349
521
MissingFormLabel
- 143
Evans R C, Clarke L, Heath P. et al .
Treatment of ulcerative colitis with an engineered human anti-TNFalpha antibody CDP571.
Aliment Pharmacol Ther.
1997;
11 (no. 6)
1031
MissingFormLabel
- 144
Knight D M, Trinh H, Le J. et al .
Construction and initial characterization of a mouse-human chimeric anti-TNF antibody.
Mol Immunol.
1993;
30 (no. 16)
1443
MissingFormLabel
- 145
Scallon B J, Moore M A, Trinh H, Knight D M, Ghrayeb J.
Chimeric anti-TNF-alpha monoclonal antibody cA2 binds recombinant transmembrane TNF-alpha
and activates immune effector functions.
Cytokine.
1995;
7 (no. 3)
251
MissingFormLabel
- 146
Siegel S A, Shealy D J, Nakada M T. et al .
The mouse/human chimeric monoclonal antibody cA2 neutralizes TNF in vitro and protects
transgenic mice from cachexia and TNF lethality in vivo.
Cytokine.
1995;
7 (no. 1)
15
MissingFormLabel
- 147
Lugering A, Schmidt M, Lugering N. et al .
Infliximab induces apoptosis in monocytes from patients with chronic active crohn’s
disease by using a caspase-dependent pathway.
Gastroenterology.
2001;
121 (no. 5)
1145
MissingFormLabel
- 148
van Dullemen H M, van Deventer S J, Hommes D W. et al .
Treatment of Crohn’s disease with anti-tumor necrosis factor chimeric monoclonal antibody
(cA2).
Gastroenterology.
1995;
109 (no. 1)
129
MissingFormLabel
- 149
Targan S R, Hanauer S B, van Deventer S J. et al .
A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha
for Crohn’s disease. Crohn’s Disease cA2 Study Group.
N Engl J Med.
1997;
337 (no. 15) (no. 18)
1029
MissingFormLabel
- 150
Present D H, Rutgeerts P, Targan S. et al .
Infliximab for the treatment of fistulas in patients with Crohn’s disease.
N Engl J Med.
1999;
340
1398
MissingFormLabel
- 151 Schreiber S. et al .ACCENT I - Study (A Crohn’s Disease Clinical rial Evaluating Infliximab in a New Long
Term Treatment Regimen). Presented at the United European Gastroenterology Week Amsterdam; Oct 6-10, 2001
MissingFormLabel
- 152
Bickston S J, Lichtenstein G R, Arseneau K O, Cohen R B, Cominelli F.
The relationship between infliximab treatment and lymphoma in Crohn’s disease.
Gastroenterology.
1999;
117 (no. 6)
1433
MissingFormLabel
- 153
Sandborn W J, Hanauer S B.
Antitumor necrosis factor therapy for inflammatory bowel disease: a review of agents,
pharmacology, clinical results, and safety.
Inflamm Bowel Dis.
1999;
5 (no. 2)
119
MissingFormLabel
- 154
Etanercept. Soluble tumor necrosis factor receptor, TNF receptor fusion protein, TNFR-Fc,
TNF 001, Enbrel.
Drugs R & D.
1999;
1 (no. 5)
MissingFormLabel
- 155
Sandborn W J, Hanauer S B, Katz S. et al .
Etanercept for active crohn’s disease: a randomized, double-blind, placebo-controlled
trial.
Gastroenterology.
2001;
121
1088
MissingFormLabel
- 156
van Denventer S JH.
Transmembrane TNF-alpha, Induction of Apoptosis, and the Efficacy of TNF-Targeting
Therapies in Crohn’s Disease.
Gastroenterology.
2001;
121 (no. 4)
1239-1242
MissingFormLabel
- 157
Holtmann M H, Douni E, Schütz M. et al .
Tumor necrosis factor-receptor 2 is upregulated on lamina propria mononuclear cells
in Crohn’s disease and promotes experimental colitis in vivo.
submitted.
MissingFormLabel
- 158
Reimund J M, Dumont S, Muller C D, Kenney J S. et al .
In vitro effects of oxpentifylline on inflammatory cytokine release in patients with
inflammatory bowel disease.
Gut.
1997;
40
475
MissingFormLabel
- 159
Bauditz J, Haemling J, Ortner M. et al .
Treatment with tumour necrosis factor inhibitor oxpentifylline does not improve corticosteroid
dependent chronic active Crohn’s disease.
Gut.
1997;
40 (no. 4)
470
MissingFormLabel
- 160
Siegmund B, Rieder F, Albrich S. et al .
Adenosine kinase inhibitor GP515 improves experimental colitis in mice.
J Pharmacol Exp Ther.
2001;
296 (no. 1)
99
MissingFormLabel
- 161
Hartmann G, Bidlingmaier C, Siegmund B. et al .
Specific type IV phosphodiesterase inhibitor rolipram mitigates experimental colitis
in mice.
J Pharmacol Exp Ther.
2000;
292 (no. 1)
22
MissingFormLabel
- 162
Meierhofer C, Dunzendorfer S, Wiedermann C J.
Protein kinase C-dependent effects on leukocyte migration of thalidomide.
J Infect Dis.
1999;
180 (no. 1)
216
MissingFormLabel
- 163
D’Amato R J, Loughnan M S, Flynn E, Folkman J.
Thalidomide is an inhibitor of angiogenesis.
Proc Natl Acad Sci U S A.
1994;
91 (no. 9)
4082
MissingFormLabel
- 164
Moreira A L, Sampaio E P, Zmuidzinas A. et al .
Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing
mRNA degradation.
J Exp Med.
1993;
177 (no. 6)
1675
MissingFormLabel
- 165
Ehrenpreis E D, Kane S V, Cohen L B, Cohen R D, Hanauer S B.
Thalidomide therapy for patients with refractory Crohn’s disease: an open-label trial.
Gastroenterology.
1999;
117 (no. 6)
1271
MissingFormLabel
- 166
Vasiliauskas E A, Kam L Y, Abreu-Martin M T. et al .
An open-label pilot study of low-dose thalidomide in chronically active, steroid-dependent
Crohn’s disease.
Gastroenterology.
1999;
117 (no. 6)
1278
MissingFormLabel
- 167
Williams L M, Gibbons D L, Gearing A. et al .
Paradoxical effects of a synthetic metalloproteinase inhibitor that blocks both p55
and p75 TNF receptor shedding and TNF alpha processing in RA synovial membrane cell
cultures.
J Clin Invest.
1996;
97 (no. 12)
2833
MissingFormLabel
Martin H. Holtmann M.D.
Department of Medicine, Johannes-Gutenberg-University
Langenbeckstraße 1
55131 Mainz
eMail: mholtman@mail.uni-mainz.de