Horm Metab Res 2002; 34(7): 400-405
DOI: 10.1055/s-2002-33473
Original Clinical
© Georg Thieme Verlag Stuttgart · New York

Leptin Treatment during the Neonatal Period is Associated with Higher Food Intake and Adult Body Weight in Rats

C.  de Oliveira Cravo 1 , C.  V.  Teixeira1 , M.  C. F.  Passos 2 , S.  C. P.  Dutra 1 , E.  G.  de Moura 1 , C.  Ramos 1
  • 1Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Brazil
  • 2Department of Applied Nutrition, Nutrition Institute, State University of Rio de Janeiro, Brazil
Weitere Informationen

Publikationsverlauf

Received: 24 September 2001

Accepted after revision: 4 February 2002

Publikationsdatum:
21. August 2002 (online)

Abstract

For this study, we have determined the effects of neonatal leptin treatment on the evolution of body weight. Experiment 1: pups were divided into two groups: LepF - injected with leptin (8 µg/100 g of body weight) for the first 10 days of lactation and control (C) - receiving saline. Experiment 2: pups were divided into two groups: LepL - injected with the same leptin concentration of experiment one for the last 10 days of lactation, and C, which received saline. Body weight and food intake were monitored until age 150 days, after which leptin concentrations were measured by ELISA. The LepF group had a significant increase in body weight (p < 0.05) from day 98 onward, in food intake (p < 0.05) from day 74 onward, and higher serum leptin concentration compared to the control (108 %, p < 0.05). The LepL group had a significant increase in body weight (p < 0.05) from day 113 onward, in food intake from day 121 onward (p < 0.001), and higher serum leptin concentration compared to controls (6.9 %, p < 0.05). These results suggest that both periods of lactation constituted a critical window for body weight and food intake programming, but the effects are more marked when the leptin is injected within the first ten days.

References

  • 1 Schwartz M W, Seeley R J, Campfield L A, Burn P, Baskin D G. Identification of targets of leptin action in rat hypothalamus.  J Clin Invest. 1996;  98 (5) 1101-1106
  • 2 Pelleymounter M A, Cullen M J, Baker M B, Hecht R, Winters D, Boone T, Collins F. Effects of the obese gene product on body weight regulation in ob/ob mice.  Science. 1995;  269 540-543
  • 3 Campfield L A, Smith F J, Guisez Y, Devos R, Burn P. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks.  Science. 1995;  269 546-549
  • 4 Friedman J M, Halaas J L. Leptin and the regulation of body weight in mammals.  Nature. 1998;  395 763-770
  • 5 Barraclough C A, Gorski R A. Evidence that the hypothalamus is responsible for androgen-induced sterility in the female rat.  Endocrinology. 1961;  68 68-79
  • 6 vom Saal F S, Bronson F H. Sexual characteristics of adult female mice are correlated with their blood testosterone levels during prenatal development.  Science. 1980;  208 597-599
  • 7 Edwards C RW, Benedidtsson R, Lindsay R S, Seckl J R. Dysfunction of placental glucocorticoid barrier: Link between fetal environment and adult hypertension?.  Lancet. 1993;  341 355-357
  • 8 Catalani A, Casolini P, Scaccianoce S, Patacchioli F R, Spinozzi P, Angelucci L. Maternal corticosterone during lactation permanently affects brain corticosteroid receptors, stress response and behaviour in rat progeny.  Neuroscience. 2000;  100 319-325
  • 9 Walker P, Courtin F. Transient neonatal hyperthyroidism results in hypothyroidism in the adult rat.  Endocrinology. 1985;  116 2246-2250
  • 10 Pracyck J B, Seidler F J, McCook E C, Slotkin T A. Pituitary-thyroid axis reactivity to hyper- and hypothyroidism in the perinatal period: Ontogeny of regulation and long term programming of responses.  J Dev Physiol. 1992;  18 105-109
  • 11 Dorner G, Plagemann A. Perinatal hyperinsulinism as possible predisposing factor for diabetes mellitus, obesity and enhanced cardiovascular risk in later life.  Horm Metab Res. 1994;  26 (5) 213-221
  • 12 Passos M CF, Ramos C F, Moura E G. Short and long term effects of malnutrition in rats during lactation on the body weight of offspring.  Nutr Res. 2000;  20 (11) 1603-1612
  • 13 Mistry A M, Swick A, Romsos D R. Leptin alters metabolic rates before acquisition of its anorectic effect in developing neonatal mice.  American Journal Physiology. 1999;  46 R742-R747
  • 14 Ahima R S, Prabakaran D, Flier J S. Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding.  The Journal of Clinical Investigation. 1998;  101 (5) 1020-1027
  • 15 Butte N F, Hopkinson J M, Nicolson M A. Leptin in human reproduction: Serum leptin levels in pregnant and lactating women.  J Clin Endocrinol Metab. 1997;  82 585-589
  • 16 McGuire M K, Beerman K, McGuire M A, Shafii B, Houseknecht K. Relationships among human milk and plasma leptin concentrations and simple anthropometric measurements in lactating humans.  Nutrition Research. 2000;  20 (12) 1697-1706
  • 17 Rayner D V, Dalgliesh G D, Duncan J S, Hardie L J, Hoggard N, Trayhurn P. Postnatal development of the ob gene system: elevated leptin levels in suckling fa/fa rats.  American Journal Physiology. 1997;  273 R446-R450
  • 18 Bayne K. Revised Guide for the Care and Use of Laboratory Animals available.  Am Phys Soc Physiol. 1996;  39 (4) 208-211
  • 19 Malendowicz L K, Macchi C, Nussdorfer G G, Nowak K W. Acute effects of recombinant murine leptin on rat pituitary-adrenocortical function.  Endocrine Research. 1998;  24 (2) 235-246
  • 20 Yuan C S, Attle A S, Zhang L, Lynch J P, Xie J T, Shi Z Q. Leptin reduces body weight gain in neonatal rats.  Pediatric Research. 2000;  48 (3) 380-383
  • 21 Prouxl K, Clavel S, Nault G, Richard D, Walker C D. High neonatal leptin exposure enhances brain GR expression and feedback efficacy on the adrenocortical axis of developing rats.  Endocrinology. 2001;  142 (11) 4607-4616
  • 22 Lucas A. Early Nutrition and later outcome. In: Ziegler EE, Lucas A, Moro GE (eds) Nutrition of the very low birthweight infant. Nestlé Nutrition Workshop Series. Philadelphia, Pennsylvania; Vevey/Lippincott, Williams & Wilkins 1999 43: 1-13
  • 23 Lucas A. Programming by early nutrition in man. In: CIBA Foundation Symposium The childhood environment and adult disease. Chichester; John Wiley 1991 156: 38-55
  • 24 Lucas A. Role of nutritional programming in determining adult morbidity.  Arch Dis Child. 1994;  71 288-290
  • 25 Waterland R A, Garza C. Potencial mechanisms of metabolic imprinting that lead to chronic disease.  Am J Clin Nutr. 1999;  69 179-197
  • 26 Oates M, Noodside B, Walker C D. Chronic leptin administration in developing rats reduces stress responsiveness partly through changes in maternal behavior.  Hormones and Behavior. 2000;  37 366-376
  • 27 Tanidaa M, Iwashitaa S, Ootsukab Y, Teruib N, Suzukia M. Leptin injection into white adipose tissue elevates renal sympathetic nerve activity dose-dependently through the afferent nerves pathway in rats.  Neuroscience Letters. 2000;  293 107-110
  • 28 Passos M CF, Ramos C F, Dutra S CP, Mouço T, Moura E G. Long-term effects of malnutrition during lactation on the thyroid function of offspring.  Horm Metab Res. 2002;  34 40-43
  • 29 Casabiel X, Piñero V, Tomé M, Peinó R, Diéguez C, Casanueva F F. Presence of leptin in colostrum and/or breast milk of neonatal food intake.  J Clin Endocr Metab. 1997;  82 4270-4273
  • 30 Houseknecht K L, McGuire M K, Portocarrero C P, McGuire M A, Beerman K. Leptin is present in human milk; relationship with maternal leptin concentrations and adiposity.  Biochem Biophys Res Commun. 1997;  240 742-747
  • 31 Herrera E, Lasuncion M A, Huerta L, Martin-Hidalgo A. Plasma leptin levels in rat mother and offspring during pregnancy and lactation.  Biology of the Neonate. 2000;  78 315-320
  • 32 Qiu J, Ogus S, Lu R, Chehab F F. Transgenic mice orespressing leptin accumulate adipose mass at an older, but not younger age.  Endocrinology. 2001;  142 (1) 348-358
  • 33 Ahima R S, Hileman S M. Postnatal regulation of hypothalamic neuropeptide expression by leptin: Implifications for energy balance and body weight regulation.  Regulatory Peptides. 2000;  92 1-7
  • 34 Barker D J. The fetal and infant origins of disease.  Eur J Clin Invest. 1995;  25 457-463
  • 35 Nagy S U, Csaba G. Dose dependence of the thyrotropin (TSH) receptor damaging effect of gonadotropin in the newborn rats.  Acta Phys Acad Scient Hung. 1980;  56 417-420
  • 36 Csaba G, Török O. Influence of insulin and biogenic amines on the division of Ghang liver cells after primary exposure (imprinting) and repeated treatments.  Cytobios. 1991;  66 153-156
  • 37 McIntosh J, Anisman H, Merali Z. Short- and long-periods of neonatal maternal separation differentially affect anxiety and feeding in adult rats: Gender-dependent effects.  Developmental Brain Research. 1999;  113 (1 - 2) 97-106
  • 38 Weaver S A, Aherne F X, Meaney M J, Schaefer A L, Dixon W T. Neonatal handling permanently alters hypothalamic-pituitary-adrenal axis function, behaviour, and body weight in boars.  Journal of Endocrinology. 2000;  164 (3) 349-359
  • 39 Penke Z, Felszeghy K, Fernette B, Sage D, Nyakas C, Burlet A. Postnatal maternal deprivation produces long-lasting modifications of the stress response, feeding and stress-related behaviour in the rat.  The European Journal of Neuroscience. 2001;  14 (4) 747-755
  • 40 Calvo R, Obregon M J, Ruiz de Ona C, Escobar del Ray F, Morreale de Escobar G. Congenital hypothyroidism, as studied in rats. Crucial role of maternal thyroxine but not of 3,5,3’-triiodothyronine in the protection of the fetal brain.  J Clin Invest. 1990;  86 (3) 889-899

Dr. E. G. de Moura

Departamento de Ciências Fisiológicas, 5° andar · Instituto de Biologia · Universidade do Estado do Rio de Janeiro

Av. 28 de setembro 87 · Rio de Janeiro RJ, 20550-030 · Brazil ·

Telefon: + 55 (21) 25 87 61 34

Fax: + 55 (21) 25 87 61 29

eMail: egmoura@uerj.br