References
<A NAME="RG18302ST-1">1</A>
Witherup KM.
Ransom RW.
Graham AC.
Bernard AM.
Salvatore MJ.
Lumma WC.
Anderson PS.
Pitzenberger SM.
Varga SL.
J.
Am. Chem. Soc.
1995,
117:
6682
<A NAME="RG18302ST-2A">2a</A>
Ho TCT.
Jones K.
Tetrahedron
1997,
53:
8287
<A NAME="RG18302ST-2B">2b</A>
Gurjar MK.
Pal S.
Rao AVR.
Heterocycles
1997,
45:
231
<A NAME="RG18302ST-2C">2c</A>
Lovely CJ.
Mahmud H.
Tetrahedron
Lett.
1999,
40:
2079
<A NAME="RG18302ST-2D">2d</A>
Batey RA.
Simoncic PD.
Lin D.
Smyj RP.
Lough AJ.
Chem. Commun.
1999,
651
<A NAME="RG18302ST-2E">2e</A>
Snider BB.
Ahn Y.
Foxman BM.
Tetrahedron Lett.
1999,
40:
3339
<A NAME="RG18302ST-2F">2f</A>
Nieman JA.
Ennis MD.
Org.
Lett.
2000,
2:
1395
<A NAME="RG18302ST-2G">2g</A>
Nyerges M.
Fejes I.
Toke L.
Tetrahedron
Lett.
2000,
41:
7951
<A NAME="RG18302ST-2H">2h</A>
Franck KE.
Aubé J.
J.
Org. Chem.
2000,
65:
655
<A NAME="RG18302ST-2I">2i</A>
Hadden M.
Nieuwenhuyzen M.
Osborne D.
Stevenson PJ.
Thompson N.
Tetrahedron
Lett.
2001,
42:
6417
<A NAME="RG18302ST-2J">2j</A>
Hadden M.
Nieuwenhuyzen M.
Potts D.
Stevenson PJ.
Thompson N.
Tetrahedron
2001,
57:
5615
<A NAME="RG18302ST-2K">2k</A>
Ma D.
Xia C.
Jiang J.
Org.
Lett.
2001,
3:
2189
<A NAME="RG18302ST-2L">2l</A>
Snider BB.
Ahn Y.
O’Hare SM.
Org. Lett.
2001,
3:
4217
<A NAME="RG18302ST-2M">2m</A>
He Y.
Mahmud H.
Wayland BR.
Rasika Dias HV.
Lovely CJ.
Tetrahedron Lett.
2002,
43:
1171
For the chemistry of α-aminonitriles
see:
<A NAME="RG18302ST-3A">3a</A>
Enders D.
Shilvock JP.
Chem. Soc. Rev.
2000,
29:
359
<A NAME="RG18302ST-3B">3b</A>
Husson H.-P.
Royer J.
Chem. Soc. Rev.
1999,
28:
383
<A NAME="RG18302ST-4">4</A>
Polniaszek RP.
Belmont SE.
J. Org. Chem.
1991,
56:
4868
<A NAME="RG18302ST-5">5</A>
Malassene R.
Toupet L.
Hurvois JP.
Moinet C.
Synlett
2002,
895
<A NAME="RG18302ST-6A">6a</A>
Beifuss U.
Ledderhose S.
J.
Chem. Soc., Chem. Commun.
1995,
2137
<A NAME="RG18302ST-6B">6b</A>
Katritzky AR.
Rachwald S.
Rachwald B.
Tetrahedron
1996,
52:
15031 ; and references cited therein
<A NAME="RG18302ST-6C">6c</A>
Katritzky AR.
Nichols DA.
Qi M.
Yang B.
J. Heterocycl.
Chem.
1997,
34:
1259
<A NAME="RG18302ST-7">7</A>
Quintard JP.
Elissondo B.
Jousseaume B.
Synthesis
1984,
495
<A NAME="RG18302ST-8">8</A>
Schneider HJ.
Junker A.
Chem. Ber.
1986,
119:
2815
<A NAME="RG18302ST-9A">9a</A>
Tamminen T.
Jokela R.
Tirkonnen B.
Lounasmaa M.
Tetrahedron
1989,
45:
2683
<A NAME="RG18302ST-9B">9b</A>
Grierson DS.
Harris M.
Husson H.-P.
Tetrahedron
1983,
39:
3683
<A NAME="RG18302ST-10A">10a</A>
Posson H.
Hurvois JP.
Moinet C.
Synlett
2000,
209
<A NAME="RG18302ST-10B">10b</A> For aza-Diels-Alder
reactions in aqueous media see:
Larsen SD.
Grieco PA.
J. Am. Chem. Soc.
1985,
107:
1768
<A NAME="RG18302ST-10C">10c</A>
Grieco PA.
Bahsas A.
Tetrahedron
Lett.
1988,
29:
5855
<A NAME="RG18302ST-10D">10d</A>
Waldman H.
Angew.
Chem., Int. Ed. Engl.
1988,
2:
274
<A NAME="RG18302ST-11">11</A>
5-Ethyl-2,3,3a,4,5,9b-hexahydro-furo-[3,2-
c
]quinoline(12):
To
a cooled (-80 °C) solution (10 mL, CH2Cl2)
containing the aminoacetal 8 (1.0 g, 5.58
mmol) was added dropwise (by syringe) and under an argon atmosphere
0.870 g (6.17 mmol) of BF3·OEt2.
The reaction mixture turned slightly green and was stirred at that
temperature for one hour. A solution (CH2Cl2,
5 mL) of 2,3-dihydrofuran (0.470 g, 6.71 mmol) was added dropwise
over a 5 min period and was allowed to react at -80 °C
with the iminium salt 6 for two hours.
The crude mixture was quenched with water, and extracted with CH2Cl2 in
the presence of Na2CO3. The combined organic
layers were dried over MgSO4 and evaporated in vacuo
to yield the crude material which was purified by column chromatography
(ether/petroleum ether, 1/2) to afford 12 (0.850 g, 75%) as a slightly
yellow oil. 1H NMR (300 MHz, CDCl3): δ =1.13
(t, J = 7.10
Hz, 3 H, CH2-CH3), 1.69-1.80 (m,
1 H, 3-Ha), 2.17-2.29 (m, 1 H, 3-Hb), 2.37-2.48
(m, 1 H, 3a-H), 2.85 (t, J = 11.30
Hz, 1 H, 4-Ha), 3.00 (dd, J = 11.30
and 5.35 Hz, 1 H, 4-Hb), 3.27 (dq, J = 14.30
and 7.15 Hz, 1 H, CH2-CH3), 3.50 (dq, J = 14.30 and
7.15 Hz, 1 H, CH2-CH3), 3.80 (td, J = 8.60 and
6.20 Hz, 1 H, 2-Ha), 3.94 (td, J = 8.45
and 5.90 Hz, 1 H, 2-Hb), 4.54 (d, J = 5.35 Hz, 1 H, 9b-H),
6.67-6.72 (m, 2 H), 7.15 (td, J = 9.60
and 1.71 Hz, 1 H), 7.32 (dm, J = 7.00
Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 10.60,
30.01, 35.65, 45.29, 49.24, 65.00, 76.08, 111.59, 116.55, 121.28,
129.02, 131.74, 145.42. C13H17NO: Calcd C,
76.81; H, 8.43; N, 6.89; O, 7.87. Found: C, 76.38; H, 8.43; N, 7.13;
O, 7.47.
<A NAME="RG18302ST-12A">12a</A>
Katritzky AR.
Rachwald S.
Rachwald B.
J. Org. Chem.
1995,
60:
2588
<A NAME="RG18302ST-12B">12b</A>
Zhang J.
Li CJ.
J. Org. Chem.
2002,
67:
3969
<A NAME="RG18302ST-13">13</A>
Kraus GA.
Neuenschwander K.
J. Org. Chem.
1981,
46:
4791
<A NAME="RG18302ST-14">14</A>
A trans fused
adduct displaying a coupling constant of 13.80 Hz between 3a-H and
9b-H has been recently isolated in 5% yield and was reported
by Lovely and co-workers in ref.
[2m]
<A NAME="RG18302ST-15">15</A>
Crystallographic data for the structure cis-
14 reported
in this paper has been deposited at the Cambridge Crystallographic Data
Center as supplementary publication no: CCDC 186783. Copies of the
data can be obtained free of charge on application to The Director
CCDC, 12 Union Road, Cambridge CB2 IEZ, UK [fax: +44(1223)336033,
e-mail: deposit@ccdc.cam.ac.uk].
<A NAME="RG18302ST-16">16</A>
4-Cyano-5-ethyl-2,3,3a,4,5,9b-hexahydro-pyrrolo[3,2-
c
]quinolin-1-carboxylic
Acid Benzyl Ester(4):
0.5
g (1.48 mmol) of 3 were dissolved in methanol
(50 mL) containing AcOLi (20 g/L) and 0.520 g (10.6 mmol)
of NaCN. The amine was oxidized at controlled potential (Ep = +0.75
V/SCE) and after the consumption of 2.0 F per mole of substrate,
the electrolysis was stopped. Classical work-up and chromatographic
purification (diethyl ether/petroleum ether, 1/2)
afforded 4 (0.460 g, 85%) as a
pale yellow oil. 1H NMR (300 MHz, C6D6,
343 K): δ = 0.89 (t, J = 7.15
Hz, 3 H, CH2-CH3), 1.21-1.34 (m,
1 H, 3-Ha), 1.44-1.58 (m, 1 H, 3-Hb), 1.94-2.04
(m, 1 H, 3a-H), 2.75-2.87 (dd, J = 15.0
and 7.15 Hz, 1 H, CH2-CH3), 2.90-3.11 (m,
2 H, CH2-CH3 and 2-Ha), 3.29 (d, J = 2.60,
1 H, 4-H), 3.33-3.36 (br, coal., 1 H, 2-Hb), 5.12 (AB, J = 13.40
Hz, 1 H, O-CH2-C6H5), 5.27 (AB, J = 13.40
Hz, 1 H, O-CH2-C6H5), 5.50 (d, J = 7.50 Hz,
1 H, 9b-H, 6.41 (d, J = 8.30
Hz, 1 H), 6.72 (t, J = 8.70
Hz, 1 H), 6.98 (t, J = 8.80
Hz, 1 H), 7.05 (m, 5 H), 7.30-7.33 (m, 2 H). 13C
NMR (75 MHz, C6D6, 343 K): δ = 11.99,
26.15, 40.23, 45.05, 45.10, 50.67, 54.70, 67.21, 112.60, 118.88,
119.96, 123.68, 127.72, 128.04, 128.73, 128.98, 131.15, 137.63,
141.34, 156.07. C22H23N3O2:
Calcd 361.1790. Found 361.1787 (MS).
<A NAME="RG18302ST-17A">17a</A>
Stevens RV.
Acc. Chem. Res.
1984,
17:
289
<A NAME="RG18302ST-17B">17b</A>
Stevens RV.
Lee AWM.
J.
Am. Chem. Soc.
1979,
101:
7032
<A NAME="RG18302ST-17C">17c</A>
Deslongchamps P. In
Stereoelectronic Effects
in Organic Chemistry
Baldwin J.
Pergamon Press;
Oxford:
1983.