Klin Monbl Augenheilkd 2002; 219(7): 477-486
DOI: 10.1055/s-2002-33587
Übersicht
© Georg Thieme Verlag Stuttgart · New York

Zur Pathogenese der herpetischen Keratitis

The pathogenesis of herpetic keratitisJustus  G.  Garweg1 , Markus  Halberstadt1
  • 1Universitäts-Augenklinik, Inselspital, Bern
Herzlichen Dank für die Übernahme der Druckkosten der Farbabbildungen an die Fa. GlaxoSmithKline AG, Talstr. 3 - 5, 3053 Münchenbuchsee, Schweiz
Further Information

Publication History

Eingegangen: 15. August 2001

Angenommen: 26. April 2002

Publication Date:
26 August 2002 (online)

Zusammenfassung

Hintergrund: Infektionen mit Viren aus der Herpesfamilie gehören zu den häufigsten Virusinfektionen der Menschheit. Der wichtigste Vertreter dieser Gruppe ist das Herpes-simplex-Virus (HSV), dessen Typ 1 Erkrankungen vorwiegend oberhalb der Gürtellinie verursacht, während der Typ 2 häufiger Affektionen im Bereich des Urogenitaltraktes verursacht. Bei immunkompetentem Wirt ist die Vermehrung des Virus durch das rasche Einsetzen unspezifischer Abwehrmechanismen auf Haut und Schleimhäute beschränkt. Nach relativ kurzer Zeit werden diese durch eine spezifische, erworbene Immunantwort ergänzt. Mit dem Einsetzen der spezifischen Immunantwort geht die Erkrankung von einer aktivreplikativen Form in eine latente Form über. In einem bestimmten Prozentsatz der Fälle kommt es jedoch periodisch zur Reaktivierung der Infektion. Patienten: Bei okulärer Beteiligung nimmt mit der Anzahl der Rezidive die Wahrscheinlichkeit für eine Progredienz von einer epithelialen zu einer stromalen Keratitis (HSK) zu. Im Gegensatz zur epithelialen wird die stromale Keratitis im Wesentlichen als eine immunpathologische Erkrankung aufgefasst. Die HSK stellt eine der häufigsten Erblindungsursachen in der westlichen Welt dar. Ergebnisse: Die Mechanismen, die zur Entwicklung der HSK und zur Etablierung der viralen Latenz beim Menschen führen, sind größtenteils unbekannt. Aus Tiermodellen, insbesondere der Maus, und klinischen Studien gibt es Hinweise für eine zellvermittelte Immunantwort als wesentliche Ursache der Gewebsschädigung. Schlussfolgerung: Der Kenntnisstand über die verschiedenen Aspekte der Pathogenese der herpetischen Keratitis ist noch lückenhaft. Die aktuellen pathophysiologischen Vorstellungen, wie z. B. die einer virusinduzierten Autoimmunerkrankung, bilden die theoretische Grundlage für die modernen therapeutischen Strategien.

Abstract

Background: Viral infections of Herpes origin are the most commonly encountered ones in man. The most important member of this family is the Herpes simplex virus (HSV), two varieties of which are known to exist: HSV-1 affects predominantly the upper half of the body, whereas HSV-2 is associated mainly with diseases of the urogenital tract. In the immunocompetent host, viral replication is usually confined to cutaneous and mucocutaneous sites, invasion of subcutaneous tissues being impeded by an early onset of non-specific defence mechanisms. These are rapidly complemented by the specific, mainly cellular, immune response. Patients: Epithelial dendritic keratitis is the first symptomatic clinical finding, and after several recurrences, the corneal stroma may become involved. This condition of herpetic stromal keratitis (HSK), which, in contrast to the epithelial one, is believed to be directed by a predominantly immunopathological process, is one of the leading causes of infectious blindness in developed countries. Results: The mechanisms underlying HSK, and the establishment of viral latency and reactivation are poorly understood. But on the basis of studies with mice as well as clinical immunohistological observations, evidence is now accumulating in support of a cell-mediated mechanism being responsible for corneal destruction. Conclusion: Our present knowledge of the pathogenesis of herpetic keratitis is incomplete. The different pathophysiological aspects reflecting our current understanding, such as that of a virally induced autoimmune disease, form the basis of accepted clinical treatment concepts.

Literatur

  • 1 Avery A C, Zhao Z S, Rodriquez A, Bikoff E K, Soheilian M, Foster C S, Cantor H. Resistance to herpes stromal keratitis conferred by an IgG2a derived peptide.  Nature. 1995;  376 431-434
  • 2 Azumi A, Atherton S S. Sparing of the ipsilateral retina after anterior chamber inoculation of HSV-1: requirement for either CD4+ or CD8+ T cells.  Invest Ophthalmol Vis Sci. 1994;  35 3251-3259
  • 3 Azumi A, Cousins S W, Kanter M Y, Atherton S S. Modulation of murine herpes simplex virus type 1 retinitis in the uninoculated eye by CD4+ T lymphocytes.  Invest Ophthalmol Vis Sci. 1994;  35 54-63
  • 4 Babu J S, Kanangat S, Rouse B T. T cell cytokine mRNA expression during the course of the immunopathologic ocular disease-herpetic stromal keratitis.  J Immunol. 1995;  154 4822-4829
  • 5 Babu J S, Thomas J, Kanangat S, Morrison L A, Knipe D M, Rouse B T. Viral replication is required for induction of ocular immunopathology by herpes simplex virus.  J Virol. 1996;  70 101-107
  • 6 Biswas S, Suresh P, Bonshek R E, Corbitt G, Tullo A B, Ridgway A E. Graft failure in human donor corneas due to transmission of herpes simplex virus.  Br J Ophthalmol. 2000;  84 701-705
  • 7 Boehnke M, Garweg J G, Germann D. Spontaneous endothelial necrosis in human donor cornea. New Orleans, La, USA; International Conference on Herpetic Eye Disease 1992 Abstract
  • 8 Bouley D M, Kanangat S, Wire W, Rouse B T. Characterization of herpes simplex virus type-1 infection and herpetic stromal keratitis development in IFN-gamma knock-out mice.  J Immunol. 1995;  155 3964-3971
  • 9 Brik D, Dunkel E, Pavan-Langstone D. Herpetic keratitis: persistance of viral particles despite topical and systemic antiviral therapy.  Arch Ophthalmol. 1993;  111 522-527
  • 10 Buchmeier M J, Welsh R M, Dutko F J, Oldstone M BA. The virology and immunobiology of lymphocytic choriomeningitis virus infection.  Adv Immunol. 1980;  30 275-331
  • 11 Cantin E M, Chen J, McNeal J, Willey D E, Openshaw H. Detection of herpes simplex virus DNA sequences in corneal transplant recipients by polymerase chain reaction assays.  Curr Eye Res. 1991;  10, Suppl 15-21
  • 12 Casanova J L, Romero P, Widmann C, Kourilsky P, Maryanski J L. T cell receptor genes in a series of class I major histocompatibility complex-restricted cytotoxic T lymphocyte clones specific for a Plasmodium berghei nonapeptide: implications for T cell allelic exclusion and antigen-specific repertoire.  J Exp Med. 1991;  174 1371-1383
  • 13 Chen W, Tang Q, Hendricks R L. Ex vivo model of leukocyte migration into herpes simplex virus infected mouse corneas.  J Leukoc Biol. 1996;  60 167-173
  • 14 Cheng H, Tumpey T M, Staats H F, van Rooijen N, Oakes J E, Lausch R N. Role of macrophages in restricting herpes simplex virus type 1 growth after ocular infection.  Invest Ophthalmol Vis Sci. 2000;  41 1402-1409
  • 15 Chun S, Daheshia M, Lee S, Rouse B T. Immune modulation by IL-10 gene transfer via viral vector and plasmid DNA: Implication for gene therapy.  Cell Immunol. 1999;  194 194-204
  • 16 Cleator G M, Klapper P E, Dennett C, Sullivan A L, Bonshek R E, Marcyniuk B, Tullo A B. Corneal donor infection by herpes simplex virus: herpes simplex virus DNA in donor corneas.  Cornea. 1994;  13 294-304
  • 17 Cockerham G C, Krafft A E, McLean I W. Herpes simplex virus in primary graft failure.  Arch Ophthalmol. 1997;  115 586-589
  • 18 Cockerham G C, Bijwaard K, Sheng Z M, Hidayat A A, Font R L, McLean I W. Primary graft failure: a clinicopathologic and molecular analysis.  Ophthalmology. 2000;  107 2083-2090
  • 19 Cook S D, Hill J H. Herpes simplex virus: molecular biology and the possibility of corneal latency.  Surv Ophthalmol. 1991;  36 140-148
  • 20 Corey L, Adams H G, Brown Z A, Holmes K K. Genital herpes simplex virus infections: clinical manifestations, course and complications.  Ann Intern Med. 1983;  98 958-972
  • 21 Daheshia M, Kuklin N, Kanangat S, Manickan E, Rouse B T. Suppression of ongoing ocular inflammatory disease by topical administration of plasmid DNA encoding IL-10.  J Immunol. 1997;  159 1945-1952
  • 22 Dawson C R, Togni B. Herpes simplex eye infections: clinical manifestations, pathogenesis and management.  Surv Ophthalmol. 1976;  21 121-135
  • 23 Deshpande S P, Kumaraguru U, Rouse B T. Why do we lack an effective vaccine against herpes simplex virus infections?.  Microbes Infect. 2000;  2 973-978
  • 24 Doerig C, Pizer L I, Wilcox C L. An antigen encoded by the latency-associated transcript in neuronal cell cultures latently infected with herpes simplex virus type 1.  J Virol. 1991;  65 2724-2727
  • 25 Doymaz M Z, Rouse B T. Herpetic stromal keratitis: an immunopathological disease mediated by CD4+ T lymphocytes.  Invest Ophthalmol Vis Sci. 1992;  33 2165-2173
  • 26 Eastlund T. Infectious disease transmission through cell, tissue, and organ transplantation: reducing the risk through donor selection.  Cell Transplant. 1995;  4 455-477
  • 27 Efstathiou S, Minson A C, Field H J, Anderson J R, Wildy P. Detection of herpes simplex virus-specific DNA sequences in latently infected mice and humans.  J Virol. 1986;  57 446-455
  • 28 Gangappa S, Manickan E, Rouse B T. Control of herpetic stromal keratitis using CTLA4Ig fusion protein.  Clin Immunol Immunopathol. 1998;  86 88-94
  • 29 Garcia-Blanco M A, Cullen B R. Molecular basis of latency in pathogenic human viruses.  Science. 1991;  254 815-820
  • 30 Garweg J, Boehnke M. Slow viral replication of HSV-1 is responsible for early recurrence of herpetic keratitis after corneal grafting.  Graefe's Arch Clin Exp Ophthalmol. 1996;  234, Suppl 133-138
  • 31 Garweg J G, Boehnke M. Low rate shedding of HSV-1 DNA, but not of infectious virus from human donor corneae into culture media.  J Med Virol. 1997;  52 320-325
  • 32 Geiger K, Howes E, Gallina M, Huang X J, Travis G H, Sarvetnick N. Transgenic mice expressing IFN-gamma in the retina develop inflammation of the eye and photoreceptor loss.  Invest Ophthalmol Vis Sci. 1994;  35 2667-2681
  • 33 Ghiasi H, Cai S, Slanina S M, Perng G C, Nesburn A B, Wechsler S L. The role of interleukin (IL)-2 and IL-4 in herpes simplex virus type 1 ocular replication and eye disease.  J Infect Dis. 1999;  179 1086-1093
  • 34 He X, Treacy M N, Simmons D M, Ingraham H A, Swanson L W, Rosenfeld M G. Expression of a large family of POU-domain regulatory genes in mammalian brain development.  Nature. 1989;  340 35-41
  • 35 Heiligenhaus A, Steuhl K P. Treatment of HSV-1 stromal keratitis with topical cyclosporin A: a pilot study.  Graefe's Arch Clin Exp Ophthalmol. 1999;  237 435-438
  • 36 Hendricks R L, Tumpey T M. Contribution of virus and immune factors to herpes simplex virus type I induced corneal pathology.  Invest Ophthalmol Vis Sci. 1990;  31 1929-1939
  • 37 Hendricks R L, Tumpey T M, Finnegan A. IFN-gamma and IL-2 are protective in the skin but pathologic in the corneas of HSV-1 infected mice.  J Immunol. 1992;  149 3023-3028
  • 38 Herpetic Eye Disease Study Group . Oral acyclovir for herpes simplex virus eye disease.  Arch Ophthalmol. 2000;  118 1030-1036
  • 39 Herpetic Eye Disease Study Group . Psychological stress and other potential triggers for recurrences of herpes simplex virus eye infections.  Arch Ophthalmol. 2000;  118 1617-1625
  • 40 Hill J M, Sedarati F, Javier R T, Wagner E K, Stevens J G. Herpes simplex virus latent phase transcription facilitates in vivo reactivation.  Virology. 1990;  174 117-125
  • 41 Hill T J. Herpes simplex virus latency. In: Roizman B (ed) The Herpes Viruses. New York; Plenum 1985 1st ed: 175-240
  • 42 Holbach L M, Font R L, Naumann G OH. Herpes simplex stromal and endothelial keratitis. Granulomatous cell reactions at the level of Descemet's membrane, the stroma, and Bowman's layer.  Ophthalmology. 1990;  97 722-728
  • 43 Holbach L M, Font R L, Beahr W, Pittler S J. HSV-antigens and HSV-DNA in avascular and vascularized lesions of human herpes simplex keratitis.  Curr Eye Res. 1991;  10, Suppl 63-68
  • 44 Holbach L M, Font R L, Wilhelmus K R. Recurrent herpes simplex keratitis with concurrent epithelial and stromal involvement. Immunohistochemical and ultrastructural observations.  Arch Ophthalmol. 1991;  109 692-695
  • 45 Hu M, Dutt J, Arrunatequi-Correa V, Baltatzis S, Foster C S. Cytokine mRNA in BALB/c mouse corneas infected with herpes simplex virus.  Eye. 1999;  13 309-313
  • 46 Inoue T, Inoue Y, Hayashi K, Yoshida A, Nishida K, Shimomura Y, Fujisawa Y, Aono A, Tano Y. Topical administration of HSV gD-IL-2 DNA is highly protective against murine herpetic stromal keratitis.  Cornea. 2002;  21 106-110
  • 47 Jaeschke H, Smith C W. Mechanisms of neutrophil induced parenchymal cell injury.  J Leukoc Biol. 1997;  61 647-653
  • 48 Jones B R, Fison P N, Cobo M L. et al . Efficacy of acycloguanosine (Wellcome 248u) against herpes simplex ulceration.  Lancet. 1979;  1 243-244
  • 49 Kanangat S, Thomas J, Gangappa S, Babu J, Rouse B T. Herpes simplex virus type 1-mediated upregulation of IL-12 (p40) mRNA expression. Implications in immunopathogenesis and protection.  J Immunol. 1996;  156 1110-1116
  • 50 Keadle T L, Usui N, Laycock K A, Kumano Y, Pepose J S, Stuart P M. Cytokine expression in murine corneas during recurrent herpetic stromal keratitis.  Ocul Immunol Inflamm. 2001;  9 193-205
  • 51 Kemp L M, Dent C L, Latchman D S. Octamer motif mediates transcriptional repression of HSV immediate-early genes and octamer-containing cellular promoters in neuronal cells.  Neuron. 1990;  4 215-222
  • 52 Kristie T M, LeBowitz J H, Sharp P A. The octamer-binding proteins from multi-protein-DNA complexes with the HSV alpha TIF regulatory protein.  EMBO J. 1989;  8 4229-4238
  • 53 Ksander B R, Hendricks R L. Cell-mediated immune tolerance to HSV-1 antigens associated with reduced susceptibility to HSV-1 corneal lesions.  Invest Ophthalmol Vis Sci. 1987;  28 1986-1993
  • 54 Labetoulle M, Kucera P, Ugolini G, Lafay F, Frau E, Offret H, Flamand A. Neuronal pathsways for the propagation of herpes simplex virus type 1 from one retina to the other in a murine model.  J Gen Virol. 2000;  81 1201-1210
  • 55 Liesegang T J. Epidemiology of ocular herpes simplex. Incidence in Rochester, Minn; 1950 through 1982.  Arch Ophthalmol. 1989;  107 1155-1159
  • 56 Liesegang T J, Melton L J, Daly P J, Ilstrup D M. Epidemiology of ocular herpes simplex. Natural history in Rochester, Minn; 1950 through 1982.  Arch Ophthalmol. 1989;  107 1160-1165
  • 57 Liesegang T J. Classification of herpes simplex virus keratitis and anterior uveitis.  Cornea. 1999;  18 127-143
  • 58 Lopez C. Resistance to herpes simplex virus-type 1 (HSV-1).  Curr Top Microbiol Immunol. 1981;  92 15-24
  • 59 Lopez C, Kirkpatrick D, Read S E, Fitzgerald P A, Pitt J, Pahwa S, Ching C Y, Smithwick E M. Correlation between low natural killing of fibroblasts infected with herpes simplex virus type-1 and susceptibility to herpesvirus infections.  J Infect Dis. 1983;  147 1030-1035
  • 60 Maertzdorf J, van der Lelij A, Baarsma G S, Osterhaus A D, Verjans G M. Herpes simplex virus type 1 (HSV-1)-induced retinitis following herpes simplex encephalitis: implications for brain-to-eye transission of HSV-1.  Ann Neurol. 2000;  49 104-106
  • 61 Manickan E, Rouse R J, Yu Z, Wire W S, Rouse B T. Genetic immunization against herpes simplex virus. Protection is mediated by CD4+ T cells.  J Immunol. 1995;  155 259-265
  • 62 Mannis M J, Plotnik R D, Schwab I R, Newton R D. Herpes simplex dendritic keratitis after keratoplasty.  Am J Ophthalmol. 1991;  111 480-484
  • 63 Matsubara S, Atherton S S. Spread of HSV-1 to the suprachiasmatic nuclei and retina in T cell depleted BALB/c mice.  J Neuroimmunol. 1997;  80 165-171
  • 64 Mercadal C, Bouley D M, DeStephano D, Rouse B T. Herpetic stromal keratitis in the reconstituted SCID mouse model.  J Virol. 1993;  67 3404-3408
  • 65 Mester J C, Milligan G N, Bernstein D I. Immunology of herpes simplex virus. In: Stanberry LR (ed) Genital and Neonatal Herpes. New York; Wiley 1996: 49-91
  • 66 Metcalf J F, Hamilton D S, Reichert R W. Herpetic keratitis in athymic (nude) mice.  Infect Immunol. 1979;  26 1164-1171
  • 67 Meyers R L, Chitjian P A. Immunology of herpesvirus infection: immunity to herpes simplex virus in eye infections.  Surv Ophthalmol. 1976;  21 194-204
  • 68 Meyers-Elliott R H, Chitjian P A. Immunopathogenesis of corneal inflammation in herpes simplex virus stromal keratitis: role of the polymorphnuclear leukocyte.  Invest Ophthalmol Vis Sci. 1981;  20 784-798
  • 69 Miller J K, Laycock K A, Nash M M, Pepose J S. Corneal Langerhans cell dynamics after herpes simplex virus reactivation.  Invest Ophthalmol Vis Sci. 1993;  34 2282-2290
  • 70 Minamoto S, Treisman J, Hankins W D, Sugamura K, Rosenberg S A. Acquired erythropoietin responsiveness of interleukin-2 dependent T lymphocytes retrovirally transduced with genes encoding chimeric erythropoietin/interleukin-2 receptors.  Blood. 1995;  86 2281-2287
  • 71 Missotten L. Immunology and herpetic keratitis.  Eye. 1994;  8 12-21
  • 72 Morris D J, Cleator G M, Klapper P E, Cooper R J, Biney E O, Dennett C, Marcyniuk B, Tullo A B. Detection of herpes simplex virus DNA in donor cornea culture medium by polymerase chain reaction.  Br J Ophthalmol. 1996;  80 654-657
  • 73 Nathan C, Xie Q. Nitric Oxide syntheses: Roles, tolls, and controls.  Cell. 1994;  78 915-918
  • 74 Neufeld M V, Steinemann T L, Merin L M, Stroop W G, Brown M F. Identification of a herpes simplex virus-induced dendrite in an eye-bank donor cornea.  Cornea. 1999;  18 489-492
  • 75 Newell C K, Martin S, Sendele D, Mercadal C M, Rouse B T. Herpes simplex virus induced stromal keratitis: role of T lymphocyte subsets in immunopathology.  J Virol. 1989;  63 769-775
  • 76 Newell C K, Sendele D, Rouse B T. Effects of CD4+ and CD8+ T-lymphocyte depletion on the induction and expression of herpes simplex stromal keratitis.  Reg Immunol. 1989;  2 366-369
  • 77 Nicholls S M, Shimeld C, Easty D L, Hill T J. Recurrent herpes simplex after corneal transplantation in rats.  Invest Ophthalmol Vis Sci. 1996;  37 425-435
  • 78 Niemialtowski M G, Rouse B T. Phenotype and functional studies on ocular T cells during herpetic infection of the eye.  J Immunol. 1992;  149 1864-1870
  • 79 Niemialtowski M G, Rouse B T. Predominance of Th1 cells in ocular tissue during herpetic stromal keratitis.  J Immunol. 1992;  149 3035-3039
  • 80 Openshaw H, McNeill J I, Lin X H, Niland J, Cantin E M. Herpes simplex virus DNA in normal corneas: persistence without viral shedding from ganglia.  J Med Virol. 1995;  46 75-80
  • 81 Pepose J S. Herpes simplex keratitis: role of viral infection versus immune response.  Surv Ophthalmol. 1991;  35 345-352
  • 82 Pepose J S, Leib D A, Stuart P M, Easty D L. Herpes simplex virus diseases: anterior segment of the eye. In: Pepose JS, Holland GN, Wilhelmus KR (eds) Ocular Infection and Immunity. St. Louis, MO; Mosby 1996: 905-932
  • 83 Rasmussen L, Merigan T C. Role of T-lymphocytes in cellular immune responses during herpes simplex virus infection in humans.  Proc Natl Acad Sci USA. 1978;  8 3957-3961
  • 84 Remeijer L, Doornenbal P, Geerards A J, Rijneveld W A, Beekhuis W H. Newly acquired herpes simplex virus keratitis after penetrating keratoplasty.  Ophthalmology. 1997;  104 648-652
  • 85 Remeijer L, Maertzdorf J, Doornenbal P, Verjans G M, Osterhaus A D. Herpes simplex virus 1 transmission through corneal transplantation (Letter).  Lancet. 2001;  357 442
  • 86 Rouse B T. Virus induced immunopathology.  Adv Virus Res. 1996;  47 353-376
  • 87 Russell R G, Nasisse M P, Larsen H S, Rouse B T. Role of T-lymphocytes in the pathogenesis of herpetic stromal keratitis.  Invest Ophthalmol Vis Sci. 1984;  25 938-944
  • 88 Sarvetnick N, Shizuru J, Liggitt D, Martin L, McIntyre B, Gregory A, Parslow T, Stewart T. Loss of pancreatic islet tolerance induced by beta-cell expression of interferon-gamma.  Nature. 1990;  346 844-847
  • 89 Schmid D S, Rouse B T. The role of T cell immunity in control of herpes simplex virus.  Curr Top Microbiol Immunol. 1992;  179 57-74
  • 90 Sears A E, Hukkanen V, Labow M A, Levine A J, Roizman B. Expression of herpes simplex virus 1 alpha transinducing factor (VP16) does not induce reactivation of latent virus or prevent the establishment of latency in mice.  J Virol. 1991;  65 2929-2935
  • 91 Sengler U, Reinhard T, Adams O, Krempe C, Sundmacher R. Herpes simplex virus infection in the media of donor corneas during organ culture: frequency and consequences.  Eye. 2001;  15 644-647
  • 92 Spencer W H, Hayes T L. Scanning and transmission electron microscopic observations of the topographic anatomy of dendritica lesions in the rabbit cornea.  Invest Ophthalmol Vis Sci. 1970;  9 183-195
  • 93 Steiner I, Spivack J G, Lirette R P, Brown S M, MacLean A R, Subak-Sharpe J H, Fraser N W. Herpes simplex virus type 1 latency-associated transcripts are evidently not essential for latent infection.  EMBO J. 1989;  8 505-511
  • 94 Steinman L. Some misconceptions about understanding autoimmunity through experiments with knockouts.  J Exp Med. 1997;  185 2039-2041
  • 95 Stevens J G, Wagner E K, Devi-Rao G B, Cook M L, Feldman L T. RNA complementary to a herpes virus alpha gene mRNA is prominent in latently infected neurones.  Science. 1987;  235 1056-1059
  • 96 Strauss S. Clinical and biological differences between recurrent herpes simplex virus and varicella-zoster virus infection.  JAMA. 1989;  262 3455
  • 97 Streilein J W. Immune regulation and the eye: a dangerous compromise.  FASEB J. 1987;  1 199-208
  • 98 Streilein J W, Dana M R, Ksander B R. Immunity causing blindness: five different paths to herpes stromal keratitis.  Immunology Today. 1997;  18 443-449
  • 99 Stumpf T H, Shimeld C, Easty D L, Hill T J. Cytokine production in a murine model of recurrent herpetic stromal keratitis.  Invest Ophthalmol Vis Sci. 2001;  42 372-378
  • 100 Su Y-H, Yan X-T, Oakes J E, Lausch R N. Protective antibody therapy is associated with reduced chemokine transcripts in herpes simplex virus type 1 corneal infection.  J Virol. 1996;  70 1277-1281
  • 101 Sundmacher R, Neumann-Haefelin D. Herpes simplex virus-positive and negative keratouveitis. In: Silverstein AM, O'Connor R (eds) Immunology and Immunopathology of the Eye. New York; Masson 1979: 225-229
  • 102 Swyers J S, Lausch R N, Kaufman H E. Corneal hypersensitivity to herpes simplex.  Br J Ophthalmol. 1967;  51 843-846
  • 103 Tang Q, Hendricks R L. Interferon gamma regulates platelet endothelial cell adhesion molecule 1 expression and neutrophil infiltration into herpes simplex virus infected mouse corneas.  J Exp Med. 1996;  184 1435-1447
  • 104 Tang Q, Chen W, Hendricks R L. Proinflammatory functions of IL-2 in herpes simplex virus corneal infection.  J Immunol. 1997;  158 1275-1283
  • 105 Teitelbaum C S, Streeten B W, Dawson C R. Histopathology of herpes simplex virus keratouveitis.  Curr Eye Res. 1987;  6 189-194
  • 106 Thomas J, Gangappa S, Kanangat S, Rouse B T. On the essential involvement of neutrophils in the immunpathological disease: herpetic stromal keratitis.  J Immunol. 1997;  158 1383-1391
  • 107 Tsumura K, Watanabe M, Sakata H. Cytotoxic T lymphocyte activity after intravitreal inoculation of herpes simplex virus type 1 in mice.  Ophthalmic Res. 1995;  27 32-36
  • 108 Tumpey T M, Elner V M, Chen S H, Oakes J E, Lausch R N. Interleukin-10 treatment can suppress stromal keratitis induced by herpes simplex virus type 1.  J Immunol. 1994;  153 2258-2265
  • 109 Tumpey T M, Chen S H, Oakes J E, Lausch R N. Neutrophil mediated suppression of virus replication after herpes simplex virus type 1 infection of the murine cornea.  J Virol. 1996;  70 898-904
  • 110 Tumpey T M, Cheng H, Cook D N, Smithies O, Oakes J E, Lausch R N. Absence of macrophage inflammatory protein-1α prevents the development of blinding herpes stromal keratitis.  J Virol. 1998;  72 3705-3710
  • 111 Tumpey T M, Cheng H, Yan X T, Oakes J E, Lausch R N. Chemokine synthesis in the HSV-1 infected cornea and its suppression by interleucin 10.  J Leukoc Biol. 1998;  63 486-492
  • 112 Verjans G M, Remeijer L, van Binnendijk R S, Cornelissen J G, Volker-Dieben H J, Baarsma S G, Osterhaus A D. Identification and characterization of herpes simplex virus-specific CD4+ T cells in corneas of herpetic stromal keratitis patients.  J Infect Dis. 1998;  177 484-488
  • 113 Verjans G M, Remeijer L, Mooy C M, Osterhaus A D. Herpes simplex virus-specific T cells infiltrate the cornea of patients with herpetic stromal keratitis: no evidence for autoreactive T cells.  Invest Ophthalmol Vis Sci. 2000;  41 2607-2612
  • 114 Wander A H, Centifanto Y M, Kaufman H E. Strain specificity of clinical isolates of herpes simplex virus.  Arch Ophthalmol. 1980;  98 1458-1461
  • 115 Weiner J M, Carroll N, Robertson I F. The granulomatous reaction in herpetic stromal keratitis: immunohistological and ultrastructural findings.  Aust N Z J Ophthalmol. 1985;  13 365-372
  • 116 Whitley R J. Herpes simplex viruses. In: Fields BN, Knipe DM, Howley P (eds) Field's Virology. Philadelphia, PA; Lippincott-Raven 1996: 2297-2342
  • 117 Whittum J A, Niederkorn J Y, McCulley J P, Streilein J W. Intracameral inoculation of herpes simlex virus type 1 induces anterior chamber associated immune deviation.  Curr Eye Res. 1983;  2 691-697
  • 118 Wildy P, Gell P G. The host response to herpes simplex virus.  Br Med Bull. 1985;  41 86-91
  • 119 Wilhelmus K R, Gee L, Hauk W W. et al . Herpetic eye disease study: a controlled trial of topical corticosteroids for herpes simplex stromal keratitis.  Ophthalmology. 1994;  101 1883-1896
  • 120 Wilhelmus K R. The treatment of herpes simplex virus epithelial keratitis.  Trans Am Ophthalmol Soc. 2000;  98 505-532
  • 121 Yasukawa M, Zarling J M. Human cytotoxic T cell clones directed against herpes simplex virus infected cells. I. Lysis restricted by HLA class II MB and DR antigens.  J Immunol. 1984;  133 422-427
  • 122 Zhao Z S, Granucci F, Yeh L, Schaffer P A, Cantor H. Molecular mimicry by herpes simplex virus type-1: autoimmune disease after viral infection.  Science. 1998;  279 1344-1347

Justus G. Garweg

Universitäts-Augenklinik · Inselspital

3010 Bern · Schweiz

Email: justus.garweg@insel.ch