Zusammenfassung
Fragestellung: Blasenhyperaktivität ist ein häufiges und belastendes Symptom der Blasenauslassobstruktion und persistiert oft auch nach effektiver Deobstruierung. Gap junctions werden schon länger als mögliche Ursache von Blasenhyperaktivität diskutiert. Wir untersuchten die regionale Verteilung des Gap-junction-Proteins Connexin43 in obstruierten und nicht obstruierten Rattenblasen. Material und Methode: Durch partielle Ligatur der Urethra wurde eine Obstruktion bei weiblichen Ratten erzeugt. Nach 6 Wochen wurden die Blasen entnommen und für den molekularbiologischen Nachweis von Connexin43-mRNS durch kompetitive RT-PCR oder die immunhistochemische Detektion von Connexin43-Protein weiterverarbeitet. Ergebnisse: Connexin43-mRNS war in allen Detrusorproben nachweisbar, in den obstruierten Gewebsproben überstieg die mRNS-Konzentration die der normalen Rattenblasen um mindestens das Zweifache. Eine Connexin43-Immunfluoreszenz konnte bei normalen Detrusorproben nicht nachgewiesen werden, jedoch zeigten alle obstruierten Präparate eine immunhistochemische Reaktion. Schlussfolgerung: Die Ergebnisse unterstützen die Hypothese, dass die infolge der Auslassobstruktion hypertrophierten Blasen-Leiomyozyten einen erniedrigten elektrischen Widerstand aufweisen und zur Aufrechterhaltung einer adäquaten interzellulären Signaltransduktion kompensatorisch eine gesteigerte Gap junction-Expression induzieren. Dadurch könnten Gap junctions über eine intensivere Zellverkoppelung eine Blaseninstabilität mitverursachen.
Abstract
Purpose: Bladder hyperactivity is a frequent and embarassing symptom of bladder outlet obstruction and often persists even after effective removal of the obstruction. It has been proposed that gap junctions be present in models of bladder overactivity including outlet obstruction. We therefore determined whether the gap junction protein connexin43 and its associated mRNA were present in normal and obstructed rat bladders. Materials and Methods: Obstruction was created in female Sprague-Dawley rats by placement of a ligature around the urethra which limited urethral opening; the ligature was omitted in controls. After 6 weeks, bladders were harvested and processed for detection of connexin43 mRNA by competitive RT-PCR or connexin43 protein by immunohistochemistry. Results: Connexin43 mRNA was present in control bladders and at least 2-fold upregulated in obstructed bladders. No connexin43 immunoreactivity was observed in control bladder smooth muscle. Connexin43 immunoreactivity between bladder smooth muscle cells was present in all obstructed bladders and presumably represents gap junctions. Conclusions: The results directly support the hypothesis that gap junctions are upregulated in obstructed bladders due to lowered input resistance of hypertrophied myocytes. Thus, they may contribute to bladder instability by increasing intercellular electrical coupling.
Schlüsselwörter
Blase - Connexine - “Gap junctions” - Immunhistochemie - RT-PCR
Key words
bladder - connexins - gap junctions - immunohistochemistry - RT-PCR
Literatur
1
Seaman E K, Jacobs B Z, Blaivas J G, Kaplan S A.
Persistence or recurrence of symptoms after transurethral resection of the prostate: a urodynamic assessment.
J Urol.
1994;
152
935-937
2
Abrams P H, Farrar D J, Turner-Warwick R T, Whiteside C G, Feneley R C.
The results of prostatectomy: a symptomatic and urodynamic analysis of 152 patients.
J Urol.
1979;
121
640-642
3
Hakenberg O W, Pinnock C B, Marshall V R.
The follow-up of patients with unfavourable early results of transurethral prostatectomy.
BJU Int.
1999;
84
799-804
4 Beyer E C, Seul K H, Larson D M. Cardiovascular Gap Junction Proteins: Molecular Characterization and Biochemical Regulation. In: Mello WC, Janse MJ, eds. Heart Cell Communication in Health and Disease. Boston/Dordrecht/London: Kluwer Academic Publisher 1998
5
Gabella G, Uvelius B.
Urinary bladder of rat: fine structure of normal and hypertrophic musculature.
Cell Tissue Res.
1990;
262
67-79
6
Elbadawi A, Yalla S V, Resnick N M.
Structural basis of geriatric voiding dysfunction. III. Detrusor overactivity.
J Urol.
1993;
150
1668-1680
7
Elbadawi A, Hailemariam S, Yalla S V, Resnick N M.
Structural basis of geriatric voiding dysfunction. VI. Validation and update of diagnostic criteria in 71 detrusor biopsies.
J Urol.
1997;
157
1802-1813
8
Cowan D B, Lye S J, Langille B L.
Regulation of vascular connexin43 gene expression by mechanical loads.
Circ Res.
1998;
82
786-793
9
Toshimori H, Toshimori K, Oura C, Matsuo H.
Immunohistochemistry and immunocytochemistry of atrial natriuretic polypeptide in porcine heart.
Histochemistry.
1987;
86
595-601
10
Beyer E C, Paul D L, Goodenough D A.
Connexin43: a protein from rat heart homologous to a gap junction protein from liver.
J Cell Biol.
1987;
105
2621-2629
11
Chomczynski P, Sacchi N.
Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.
Anal Biochem.
1987;
162
156-159
12
Birnboim H C, Doly J.
A rapid alkaline extraction procedure for screening recombinant plasmid DNA.
Nucleic Acids Res.
1979;
7
1513-1523
13
Ish-Horowicz D, Burke J F.
Rapid and efficient cosmid cloning.
Nucleic Acids Res.
1981;
9
2989-2998
14
Cartun R W, Pedersen C A.
An immunocytochemical technique offering increased sensitivity and lowered cost with a streptavidin-horseradish peroxidase conjugate.
J Histotechnol.
1989;
12
273-277
15
Brading A F.
A myogenic basis for the overactive bladder.
Urology.
1997;
50
57-67; discussion 68 - 73
16
Hampel C, Dolber P C, Bremer R E, Schwinn D A, Thüroff J W, Thor K B.
Increased expression of gap junctions (Connexin43) in rat bladder outlet obstruction.
J Urol.
2000;
163
49 (Abstract 215)
17
Alva S, Ameda K, Yalla S V, Sullivan M P.
Gap junctions in the rat urinary bladder.
J Urol.
2001;
135
8 (Abstract 157)
18
Clairmont A, Sies H.
Evidence for a posttranscriptional effect of retinoic acid on connexin43 gene expression via the 3"-untranslated region.
FEBS Lett.
1997;
419
268-270
19
Van Kempen M J, Vermeulen J L, Moorman A F, Gros D, Paul D L, Lamers W H.
Developmental changes of connexin40 and connexin43 mRNA distribution patterns in the rat heart.
Cardiovasc Res.
1996;
32
886-900
20
Doble B W, Chen Y, Bosc D G, Litchfield D W, Kardami E.
Fibroblast growth factor-2 decreases metabolic coupling and stimulates phosphorylation as well as masking of connexin43 epitopes in cardiac myocytes.
Circ Res.
1996;
79
647-658
21
Beardslee M A, Laing J G, Beyer E C, Saffitz J E.
Rapid turnover of connexin43 in the adult rat heart.
Circ Res.
1998;
83
629-635
22
Laing J G, Tadros P N, Green K, Saffitz J E, Beyer E C.
Proteolysis of connexin43-containing gap junctions in normal and heat-stressed cardiac myocytes.
Cardiovasc Res.
1998;
38
711-718
23
ten Velde I, de Jonge B, Verheijck E E. et al .
Spatial distribution of connexin43, the major cardiac gap junction protein, visualizes the cellular network for impulse propagation from sinoatrial node to atrium.
Circ Res.
1995;
76
802-811
24
van Kempen M J, Fromaget C, Gros D, Moorman A F, Lamers W H.
Spatial distribution of connexin43, the major cardiac gap junction protein, in the developing and adult rat heart.
Circ Res.
1991;
68
1638-1651
25
Beny J L, Connat J L.
An electron-microscopic study of smooth muscle cell dye coupling in the pig coronary arteries. Role of gap junctions.
Circ Res.
1992;
70
49-55
26
Brink P R.
Gap junctions in vascular smooth muscle.
Acta Physiol Scand.
1998;
164
349-356
27
Fry C H, Cooklin M, Birns J, Mundy A R.
Measurement of intercellular electrical coupling in guinea-pig detrusor smooth muscle.
J Urol.
1999;
161
660-664
28
Wang X, Maake C, Hauri D, John H.
Evidence for electrical coupling of smooth muscle cells in the human trigone.
J Urol.
2001;
165
39 (Abstract 159)
29
Sui G P, Fry C H, Dupont E, Severs N J, Gillespie J I, Newgreen D.
Intercellular electrical coupling and gap junction prevalence in detrusor from stable and unstable human bladders.
J Urol.
2001;
165
32-33 (Abstract 135)
Dr. C. Hampel
Urologische Universitätsklinik, Johannes-Gutenberg-Universität Mainz
Langenbeckstr. 1
55131 Mainz
Phone: 06131/177183
Fax: 06138/981409
Email: hampel@urologie.klinik.uni-mainz.de