Int J Sports Med 2002; 23(6): 457-462
DOI: 10.1055/s-2002-33745
Orthopedics & Biomechanics
© Georg Thieme Verlag Stuttgart · New York

Elbow Load with Various Forearm Positions During One-Handed Pushup Exercise

P.  H.  Chou1 , C.  J.  Lin2, 3 , Y.  L.  Chou2 , S.  Z.  Lou2 , F.  C.  Su2 , G.  F.  Huang2
  • 1Department of Orthopaedic Surgery, Kao-hsiung Medical University, Kao-hsiung, Taiwan
  • 2Institute of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
  • 3Department of Orthopaedic Surgery, National Cheng Kung University Medical Center, Tainan, Taiwan
Further Information

Publication History

Publication Date:
05 September 2002 (online)

Abstract

This is the first study of the one-handed pushup, and tries to show the effects of forearm rotations. Previous studies of elbow loading have focused on passive loading and small loads, because data from large loads during active exercise is not easy to obtain. In order to investigate the biomechanical impact of hand position on the elbow and the potential trauma mechanisms of outstretched elbow, joint loading across the elbow was analyzed for three forearm rotational positions, neutral, 90° internal rotation and 90° external rotation. Both kinematic and kinetic data were collected from eight volunteers by the Motion Analysis System and a Kistler Force Plate. Statistical analysis of the data delineates the relationship between elbow joint load and hand rotational position during one-handed pushup, and also provides useful biomechanical information for this challenging exercise. The axial and valgus stresses and forces are the major concerns. The peak axial forces exerted on the elbow joint averaged 65 % of the body weight when the hand position was neutral, and was significantly reduced with the hand rotated either internally or externally. The peak valgus shear force with the hand externally rotated was 50 % greater than the other two positions. Thus, outward rotation of the hand is a stressful position that should be avoided during one-handed pushup exercise or forward falls with outstretched hands in order to reduce the risk of elbow injuries.

References

  • 1 Whitaker T D. OrthoTrak Full Body Gait Analysis-Reference Manual. California; Motion Analysis Corporation 1993
  • 2 An K N, Morrey B F. Biomechanics of the elbow. In: Morrey BF (ed) The Elbow and its Disorders. Philadelphia; Sanders 1993: 43-61
  • 3 Bauman M D, Plamondon A, Gagnon D. Comparative assessment of 3D joint marker sets for the biomechanical analysis of occupational tasks.  Internal J of Industrial Ergonomics. 1998;  21 475-482
  • 4 Bhambhani Y, Maikala R. Gender differences during treadmill walking with graded loads: biomechanical and physiological comparisons.  Eur J Appl Physiol. 2000;  81 75-83
  • 5 Chiu J, Robinovitch S N. Prediction of upper extremity impact forces during falls on the outstretched hand.  J Biomech. 1998;  31 1169-1176
  • 6 Dempster W T. Space requirements of the seated operator. Dayton OH; Wright-Patterson Air Force Base 1955: 55-159
  • 7 Donkers M J, An K N, Chao E Y, Morrey B F. Hand position affects elbow joint load during push-up exercise.  J Biomech. 1993;  26 625-632
  • 8 Evetovich T K, Housh T J, Johnson G O, Smith D B, Ebersole K T, Perry S R. Gender comparisons of the mechanomyographic responses to maximal concentric and eccentric isokinetic muscle actions.  Medicine & Science in Sports & Exercise. 1998;  30 1697-1702
  • 9 Harmon K G, Ireland M L. Gender differences in noncontact anterior cruciate ligament injuries.  Clinics in Sports Medicine. 2000;  19 287-302
  • 10 Hart D A, Archambault J M, Kydd A, Reno C, Frank C B, Herzog W. Gender and neurogenic variables in tendon biology and repetitive motion disorders.  Clin Orthop Rel Res. 1998;  1 44-56
  • 11 Haug E J. Computer Aided Kinematics and Dynamics of Mechanical Systems. Volume 1: Basic Methods. Massachusetts; Allyn and Bacon 1989
  • 12 Kistler T J. Multicomponent measuring force plate for biomechanics and industry type 9287. Switzerland; Kistler 1989
  • 13 McCaw S T, Devita P. Errors in alignment of center of pressure and foot coordinates affect predicted lower extremity torques.  J Biomech. 1995;  28 985-988
  • 14 Morrey B F, An K N, Stormont T J. Force transmission through the radial head.  J Bone and Joint Surg [Am]. 1988;  70 250-256
  • 15 Neviaser J S, Wickstrom J K. Dislocation of the elbow: a retrospective study of 115 patients.  South Med J. 1977;  70 172-173
  • 16 O'Driscoll S W, Morrey B F, Korinek S, An K N. Elbow subluxation and dislocation. A spectrum of instability.  Clin Orthop Rel Res. 1992;  2 186-197
  • 17 Shott S. Statistics for health professionals. Philadelphia; W. B. Saunders 1990
  • 18 Winter D A. Biomechanics and motor control of human movement. New York; Wiley 1990: 75-102
  • 19 Woltring H J. A FORTRAN package for generalized, cross-validatory spline smoothing and differentiation.  Adv Eng Software. 1986;  8 104-113
  • 20 Xu L, Strauch R J, Athesian G A, Pawluk R J, Mow V C, Rosenwasser M P. Topography of the osteoarthritic thumb carpometacarpal joint and its variations with regard to gender, age, site, and osteoarthritic stage.  J Hand Surgery - Am. 1998;  23 454-464

C. J. Lin, MD

Department of Orthopedic Surgery · National Cheng Kung University Medical College

138 Sheng Li Road · Tainan 70428 · Taiwan · ROC ·

Phone: 886-6-276-6613

Fax: 886-6-276-618

Email: mark@mail.ncku.edu.tw