Planta Med 2002; 68(8): 680-684
DOI: 10.1055/s-2002-33788
Original Paper
Pharmacology...
© Georg Thieme Verlag Stuttgart · New York

Structural Effects on the Bioactivity of Dehydroabietic Acid Derivatives

Bárbara Gigante1 , Ana M. Silva1 , Maria João Marcelo-Curto1 , Sónia Savluschinske Feio1 , José Roseiro1 , Lucinda V. Reis2
  • 1Departamento de Tecnologia de Indústrias Quimicas and Laboratório de Microbiologia Industrial, Instituto Nacional de Engenharia e Tecnologia Industrial, Lisboa, Portugal
  • 2Departamento de Química, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
Further Information

Publication History

Received: November 16, 2001

Accepted: March 23, 2002

Publication Date:
09 September 2002 (online)

Abstract

The synthesis and the evaluation of the antimicrobial activity against a filamentous fungus, yeasts and bacteria of 15 hydrophenanthrene compounds derived from dehydroabietic acid, bearing different functional groups and different stereochemistry of the A/B ring junction are disclosed. The results obtained showed how their activity is dependent of the functionality at C-18, which can be increased by deisopropylation or introduction of other groups into the molecule. While the filamentous fungus tested is sensitive to almost all of the compounds under study, the aldehyde function showed to be of major importance to the inhibition of yeast. Alcohols and aldehyde C-18 derivatives also inhibit the growth of a Gram-positive bacteria, whereas Gram-negative are not sensitive.

References

  • 1 Franich R A, Gadgil P D, Shain L. Fungistatic effects of Pinus radiata needle epicuticular fatty and resin acids on Dothistroma pini. Physiol.  Plant Pathol.. 1983;  23 183-95
  • 2 Ulubelen A, Oksuz S, Kolac U, Bozok-Johansson C, Çelik C, Voelter W. Antibacterial diterpenes from the roots of Salvia viridis .  Planta Medica. 2000;  66 458-62
  • 3 Mensah A Y, Houghton P J, Bloomfield S, Vlietinck A, Berghe D V. Known and novel terpenes from Buddleja globosa displaying selective antifungal activity against dermatophytes. J. Nat.  Prod.. 2000;  63 1210-3
  • 4 Feliciano A S, Gordaliza M, Salinero M A, Corral J MM. Abietane acids: Sources, biological activities, and therapeutic uses.  Planta Medica. 1993;  59 485-98, and references cited therein
  • 5 Gigante B, Lobo A M, Prabhakar S, Marcelo-Curto M J. A new selective synthesis of oxidized resin acid derivatives.  Synthetic Commun.. 1991;  21 1959-66
  • 6 Savluchinske-Feio S, Roseiro J C, Gigante B, Marcelo-Curto M J. Method on multiwell plates for the evaluation of the antimicrobial activity of resin acid derivatives. J. Microbiol.  Methods 1997; 28 : 201 - 6 and. 1999;  35 201-6
  • 7 Halbrook N J, Lawrence R V. The isolation of dehydroabietic acid from disproportionated rosin. J. Org.  Chem.. 1966;  31 4246-7
  • 8 Shyong Li W, McChesney J D. Preparation of potential anti-inflammatory agents from dehydroabietic Acid.  J. Pharm Sci.. 1992;  81 646-51
  • 9 Ohta M, Ohmori L. Studies on abietic acid derivatives. deisopropylation of dehydroabietic acid. Chem. Pharm.  Bull.. 1957;  5 91-95 and 96 - 100
  • 10 Pereira C, Alvarez F, Marcelo-Curto M J, Gigante B, Ribeiro F R, Guisnet M. Stereoselectivity of the deisopropylation of methyl dehydroabietate. Stud. Surf. Sci.  Cat.. 1993;  78 581-6
  • 11 Tahara A, Akita H. Diterpenoids. XXX. Reaction of methyl dehydroabietate derivatives with aluminum chloride under effect of electron-donating group. Chem. Pharm. Bull.  1975; 23 : 1976 - 83 and Ohta M., Yakugaku Zasshi. 1957;  77 924; Chem Abstr. 1958, 1110
  • 12 Spencer T A, Weaver T D, Villarica R M, Friary R J, Posler J, Schwartz M A. Syntheses of methyl deisopropyldehydroabietate. Diterpenoid synthesis by the AB-ABC approach. J. Org.  Chem.. 1968;  33 712-9
  • 13 Wenkert E, Beak P, Carney R WJ, Chamberlain J W, Johnston D BR, Roth C D, Tahara A. Derivatives of dehydroabietic and podocarpic acids. Can. J.  Chem.. 1963;  41 1924-36
  • 14 Henriks M L, Ekman R, von Weissenberg K. Bioassay of some resin and fatty acids with Fomes annosus. Acta Acad.  Aboensis. 1979;  39B 1-7
  • 15 Harris G C. Resin acids. V. The composition of the gum oleoresin acids of Pinus palustris. J. Am.  Chem.. Soc.1948;  70 3671-4
  • 16 Buratti L, Allais J P, Barbier M. A resin acid from Pinus sylvestris needles.  Phytochemistry. 1990;  29 2708-9
  • 17 Norin T, Winell B. Extractives from the bark of common spruce, Picea abies L. Karst. Acta Chem.  Scand.. 1972;  26 2280-96
  • 18 Hafizoglu H, Reunanen M. Composition of oleoresins from bark and cones of Abies nordmanniana and Picea orientalis .  Holzforschung,. 1994;  48 7-11
  • 19 Fraga B M, Mestres T, Diaz C E, Arteaga J M. Dehydroabietane diterpenes from Nepeta teydea .  Phytochemistry. 1994;  35 1509-12

Bárbara Gigante, Ph. D.

INETI, Departamento de Tecnologia de Indústrias Químicas


Estrada do Paço do Lumiar, 22, 1649-038 Lisbon

Portugal

Email: barbara.gigante@ineti.pt

Fax: +351.217.168.100