References
1a
Serra S.
Fuganti C.
Moro A.
J. Org. Chem.
2001,
66:
7883
1b
Brenna E.
Fuganti C.
Serra S.
J.
Chem. Soc., Perkin Trans. 1
1998,
901
1c
Brenna E.
Fuganti C.
Perozzo V.
Serra S.
Tetrahedron
1997,
53:
15029
2
Fuganti C.
Serra S.
J. Chem. Res., Synop.
1998,
638
3
Brenna E.
Fuganti C.
Serra S.
Synlett
1998,
365
4a
Fuganti C.
Serra S.
Tetrahedron
Lett.
1998,
39:
5609
4b
Brenna E.
Fuganti C.
Serra S.
Tetrahedron
1998,
54:
1585
5a
Brenna E.
Fuganti C.
Grasselli P.
Serra S.
Zambotti S.
Chem.-Eur. J.
2002,
8:
1872
5b
Fuganti C.
Serra S.
Synlett
1999,
1241
6a
Serra S.
Synlett
2000,
890
6b
Fuganti C.
Serra S.
J. Org. Chem.
1999,
64:
8728
6c
Fuganti C.
Serra S.
Synlett
1998,
1252
7a Propargyl
alcohol 3a was oxidised with chromium trioxide
and sulfuric acid as described in the following reference: Veliev MG.
Guseinov MM.
Synthesis
1980,
461
7b Propargylic alcohols 3b-i were
oxidised with MnO2 in CH2Cl2 at
r.t.
8a Propargylic
alcohols 3a and 3b are
commercially available. Alcohol 3c was
prepared from phenylacetylene by treatment with butyllithium followed
by addition of formaldehyde. Alcohol 3h was
prepared by palladium mediated coupling of (E)-β-bromostyrene
with propargyl alcohol accordingly to the following reference: Sonogashira K.
Tohda Y.
Hagihara N.
Tetrahedron Lett.
1975,
4467
8b Alcohols 3d-g and 3i were
prepared by palladium mediated coupling of propargyl alcohol with
1-bromo-4-fluorobenzene, 1-bromo-2-chlorobenzene, 4-bromoveratrole,
4-nitro-1-iodobenzene and 3-bromothiophene, respectively; this method
of preparation has been performed by a small modification of the
method described in the following reference: Bleicher LS.
Cosford NDP.
Herbaut A.
McCallum JS.
McDonald IA.
J. Org. Chem.
1998,
63:
1109
9 For the preparation of this ylide
see: Hudson RF.
Chopard PA.
Helv. Chim. Acta
1963,
46:
2178
The Wittig reaction of ylide 5 with the aldehydes affords the 3-(E)-alkylidene-succinic acid monoalkyl
esters in a highly stereoselective way; for previous studies on
this reaction see:
10a
Paquette LA.
Schulze MM.
Bolin D.
J. Org. Chem.
1994,
59:
2043
10b
Röder E.
Krauss H.
Liebigs Ann.
Chem.
1992,
177
11 General procedure for the benzannulation
of acids 6a-i to give
phenols 7a-i:
Acids 6a-i (50
mmoles)were dissolved in acetic anhydride (48 mL, 0.5 mol). To this
solution, anhyd sodium acetate (8.2 g, 0.1 mol) and hydroquinone
(275 mg, 2.5 mmol) were added in one portion. The obtained heterogeneous
mixture was heated at reflux for 2 h under a nitrogen atmosphere. After
cooling to r.t., the acetic anhydride was removed in vacuo and the
residue was treated with ethyl acetate (200 mL) and water (100 mL).
The organic phase was separated, dried (Na2SO4)
and concentrated under reduced pressure. The residue was purified
by chromatography and crystallisation to give phenols derivatives 7a-i.
12 All new compounds were fully characterised.
Selected analytical data:
6f:
Anal. Calcd for C17H18O6: C, 64.14;
H, 5.70. Found: C, 63.98; H, 5.72. Mp 135-136 °C
(ethyl acetate); 1H NMR (250 MHz, CDCl3) δ 1.30
(3 H, t, J = 7.2 Hz), 3.70 (2
H, s), 3.88 (3 H, s), 3.90 (3 H, s), 4.25 (2 H, q, J = 7.2
Hz), 6.82 (1 H, d, J = 8.5 Hz),
6.95 (1 H, d, J = 1.7 Hz), 7.04
(1 H, s), 7.10 (1 H, dd, J = 8.5,
1.7 Hz); EI-MS m/z 319 (M+ + 1),
318 (M+), 289, 273, 259, 245, 229, 217, 214,
201, 185, 151, 128, 88; FT-IR(nujol): (cm-1)
766, 807, 860, 1036, 1054, 1212, 1247, 1281, 1515, 1594, 1618, 1702,
2187.
6i: Anal. Calcd for C13H12O4S:
C, 59.08; H, 4.58; S, 12.13. Found: C, 59.15; H, 4.60; S, 12.20.
Mp 92 °C (hexane-ethyl acetate); 1H
NMR (250 MHz, CDCl3) δ 1.30 (3 H, t, J = 7.1 Hz), 3.68 (2 H, s),
4.25 (2 H, q, J = 7.1 Hz), 7.02
(1 H, s), 7.14 (1 H, dd, J = 5,
1 Hz), 7.30 (1 H, dd, J = 5,
3 Hz), 7.56 (1 H, dd, J = 3,
1 Hz); EI-MS m/z 264 (M+),
220, 205, 191, 163, 147, 135, 111, 83; FT-IR(nujol): (cm-1)
763, 811, 1041, 1203, 1288, 1421, 1619, 1709, 2195.
7f: Anal. Calcd for C21H22O8:
C, 62.68; H 5.51. Found: C, 62.90; H, 5.55. Mp 109-110 °C
(hexane-ethyl acetate);
1H
NMR (250 MHz, CDCl3) δ 1.39 (3 H, t, J = 7.1 Hz), 2.02 (6 H, s),
3.85 (3 H, s), 3.92 (3 H, s), 4.39 (2 H, q, J = 7.1
Hz), 6.77-6.93 (3 H, m), 7.72 (2 H, s); EI-MS m/z 402 (M+),
360, 343, 318, 303, 273, 244, 214, 199, 183, 157, 131, 115, 95; FT-IR(nujol):
(cm-1) 758, 862, 911, 1030, 1200, 1227,
1258, 1309, 1523, 1586, 1605, 1719, 1770.
7i:
Anal. Calcd for C17H16O6S: C, 58.61;
H 4.63; S, 9.20. Found: C, 58.50; H, 4.65; S, 9.25. Mp 100-101 °C
(hexane-ethyl acetate); 1H NMR (250
MHz, CDCl3) δ 1.38 (3 H, t,
J = 7.1
Hz), 2.08 (6 H, s), 4.38 (2 H, q, J = 7.1
Hz), 7.11 (1 H, dd, J = 4.3,
2 Hz), 7.34-7.39 (2 H, m), 7.72 (2 H, s); EI-MS m/z 348 (M+),
306, 289, 264, 250, 236, 219, 192, 163, 134, 111, 91; FT-IR(nujol):
(cm-1) 756, 868, 1043, 1198, 1208,
1307, 1562, 1719, 1768.
13a
Glüsenkamp KH.
Büchi G.
J. Org. Chem.
1986,
51:
4481
13b For the preparation of
the 3,5-dihydroxybenzoic acid (R = H) see: Weston AW.
Suter CM.
Org.
Synth.
1941,
21:
27
14a
Kojima T.
Ohishi T.
Yamamoto I.
Matsuoka T.
Kotsuki H.
Tetrahedron Lett.
2001,
42:
1709
14b
Hattori T.
Takeda A.
Suzuki K.
Koike N.
Koshiishi E.
Miyano S.
J. Chem. Soc., Perkin Trans.
1
1998,
3661
14c
Johnson MG.
Foglesong RJ.
Tetrahedron
Lett.
1997,
38:
7001
15a
Occelli E.
DePaoli A.
Nathansohn G.
Gazz. Chim. Ital.
1981,
111:
383
15b
Budzikiewicz H.
Metlesics W.
J. Org. Chem.
1959,
24:
1125