Abstract
While non-racemic catalysts can generate non-racemic products
with or without the non-linear relationship in enantiomeric excesses
between catalysts and products, racemic catalysts inherently give
only a racemic mixture of chiral products. Racemic catalysts can
be enantioselectively evolved into highly activated catalysts by
association with chiral activators. Asymmetric activation strategy
can produce greater enantiomeric excess in the products, even when
using a catalytic amount of chiral activator per chiral or racemic
catalysts bearing atropisomeric (atropos :
from Greek a meaning not, and tropos meaning turn) ligands, than the enantioselectivity
attained by the enantiomerically pure catalyst on its own. Some
recent applications of the asymmetric activation catalysis that
employ not only atropos and racemic ligands
but also tropos ligands without enantiomeric
resolution are herein reported. The great success of the asymmetric
catalysts with tropos ligands clearly
illustrate that chirally rigid atropos ligands
can be replaced by chirally flexible tropos ligands
to give preferentially the thermodynamically favorable diastereomer
of catalysts with higher chiral efficiency than does the minor isomer.
The asymmetric activation concept now progress toward the use of
racemic but tropos ligands rather than
the use of atropos ones.
1 Prologue: Tropos or Atropos ? That is the Question!
2 Asymmetric Activation of Atropos and
Racemic Catalysts
2.1 Carbon-Carbon Bond Forming (Ene, Aldol, and Diels-Alder)
Reactions
2.2 Hydrogenation
3 Asymmetric Activation of Racemic but Tropos Catalysts
3.1 Biphenol (BIPOL)
3.2 Biphenylphosphine (BIPHEP)
3.3 Bis(diphenylphosphino)ferrocene (DPPF)
3.4 Hydrogenation
3.5 Carbon-Carbon Bond Forming (Diels-Alder and Ene) Reactions
3.6 Tropos vs. Atropos Nature
of BIPHEP-Metal Catalysts
4 Epilogue: Tropos rather than Atropos ! That is an Answer!
Key words
asymmetric catalysis - asymmetric activation -
atropos
-
tropos
- biphenylphosphine
References
1a
Gawley RE.
Aube J.
Principles of Asymmetric Synthesis
Pergamon;
London:
1996.
1b
Advances
in Catalytic Processes
Vol. 1:
Doyle MP.
JAI Press;
London:
1995.
1c
Noyori R.
Asymmetric Catalysis in Organic Synthesis
Wiley;
New
York:
1994.
1d
Brunner H.
Zettlmeier W.
Handbook
of Enantioselective Catalysis
VCH;
Weinheim:
1993.
1e
Catalytic
Asymmetric Synthesis
Ojima I.
VCH;
New
York:
1993.
1f
Kagan HB.
Comprehensive Organic
Chemistry
Vol. 8:
Pergamon;
Oxford:
1992.
1g
Asymmetric
Catalysis
Bosnich B.
Martinus
Nijhoff Publishers;
Dordrecht:
1986.
2
Kuhn R.
Molekulare Asymmetrie in Stereochemie
Freuberg H.
Franz, Deutike;
Leipzig-Wien:
1933.
p.803
3
Haworth WH.
The Constitution of the Sugars
Edward Arnold & C.;
London:
1929.
p.90
4a
Kemp JD.
Pitzer KS.
J.
Chem. Phys.
1936,
4:
749
4b
Kemp JD.
Pitzer KS.
J.
Am. Chem. Soc.
1937,
59:
276
5
Christie GH.
Kenner J.
J. Chem. Soc.
1922,
121:
614
6a
Oki M.
Yamamoto G.
Bull.
Chem. Soc. Jpn.
1971,
44:
266
6b
Oki M.
Top.
Stereochem.
1983,
14:
1
7a
Pople JA.
Schneider WG.
Bernstein HJ.
High Resolution Nuclear Magnetic Resonance
McGraw-Hill;
New
York:
1959.
p.218
7b
Binsch G.
Band-Shape Analysis in Dynamic Nuclear Magnetic
Resonance Spectroscopy
Jackman LM.
Cotton FA.
Academic
Press;
New York:
1975.
p.45-81
7c
Binsch G.
Top
Stereochem.
1968,
3:
97
8
Eliel EL.
Wilen SH.
Stereochemistry of
Organic Compounds
Chap.14-15:
Wiley;
New
York:
1994.
9
Ahmed SR.
Hall DM.
J. Chem. Soc.
1959,
3383
10
Iffland DC.
Siegel H.
J. Am. Chem. Soc.
1958,
80:
1947
Reviews:
11a
Berrisford DJ.
Bolm C.
Sharpless KB.
Angew. Chem., Int. Ed. Engl.
1995,
34:
1059
11b
Jacobsen EN.
Marko I.
France MB.
Svendsen JS.
Sharpless KB.
J. Am. Chem. Soc.
1989,
111:
737
11c
Jacobsen EN.
Marko I.
France MB.
Svendsen JS.
Sharpless KB.
J. Am. Chem. Soc.
1988,
110:
1968
12 Review: Mikami K.
Terada M.
Korenaga T.
Matsumoto Y.
Ueki M.
Angelaud R.
Angew. Chem. Int. Ed.
2000,
39:
3532
13a
Blaser H.-U.
Müller M.
Enantioselective Catalysis by Chiral Solids:
Approaches and Results, In Heterogeneous Catalysis
and Fine Chemicals II
Guisnet M.
Barrault J.
Bouchoule C.
Duprez D.
Perot G.
Maurel M.
Montassier C.
Elsevier;
Amsterdam:
1991.
13b
Blaser H.-U.
Tetrahedron:
Asymmetry
1991,
2:
843
13c
Garland M.
Blaser HU.
J. Am. Chem. Soc.
1990,
112:
7048
13d
Margitfalvi JL.
Marti P.
Baiker A.
Botz L.
Sticher O.
Catal.
Lett.
1990,
6:
281
14a
Alcock NW.
Brown JM.
Maddox PJ.
J.
Chem. Soc., Chem. Commun.
1986,
1532
14b
Brown JM.
Maddox PJ.
Chirality
1991,
3:
345
14c
Maruoka K.
Yamamoto H.
J. Am. Chem. Soc.
1989,
111:
789
14d
Faller JW.
Parr J.
J. Am. Chem.
Soc.
1993,
115:
804
14e
Faller JW.
Tokunaga M.
Tetrahedron
Lett.
1993,
34:
7359
14f
Faller JW.
Liu Sams X.
J. Am.
Chem. Soc.
1996,
118:
1217
14g
Sablong R.
Osborn JA.
Faller JW.
J. Organomet. Chem.
1997,
527:
65
15
Mikami K.
Matsukawa S.
Nature (London)
1997,
385:
613
16
Matsukawa S.
Mikami K.
Tetrahedron: Asymmetry
1997,
8:
815
17
Matsukawa S.
Mikami K.
Enantiomer
1996,
1:
69
Reviews:
18a
Mikami K.
Nakai T.
Catalytic
Asymmetric Synthesis
2nd Ed.:
Ojima I.
Wiley-VCH;
Weinheim:
2000.
p.543
18b
Mikami K.
Terada M.
Comprehensive Asymmetric
Catalysis
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
Heidelberg:
1999.
p.1143
18c
Mikami K.
Shimizu M.
Chem. Rev.
1992,
92:
1021
18d
Mikami K.
Terada M.
Shimizu M.
Nakai T.
J. Symp. Org. Chem. Jpn.
1990,
48:
292
19a
Ohkuma T.
Ooka H.
Hashiguchi S.
Ikariya T.
Noyori R.
J. Am. Chem. Soc.
1995,
117:
2675
19b
Ohkuma T.
Ooka H.
Ikariya T.
Noyori R.
J. Am. Chem. Soc.
1995,
117:
10417
19c
Ohkuma T.
Ooka H.
Yamakawa M.
Ikariya T.
Noyori R.
J.
Org. Chem.
1996,
61:
4872
19d
Ohkuma T.
Ikehira H.
Ikariya T.
Noyori R.
Synlett
1997,
467
19e
Doucet H.
Ohkuma T.
Murata K.
Yokozawa T.
Kozawa M.
Katayama E.
England AF.
Ikariya T.
Noyori R.
Angew.
Chem. Int. Ed.
1998,
37:
1703
20a
Ohkuma T.
Doucet H.
Pham T.
Mikami K.
Korenaga T.
Terada M.
Noyori R.
J. Am. Chem. Soc.
1998,
120:
1086
20b
Mikami K.
Korenaga T.
Matsumoto Y.
Ueki M.
Terada M.
Matsukawa S.
Pure Appl. Chem.
2001,
73:
255
21 See ref.
[14 ]
Amounts
of chiral poisons: 2.0 equiv for Al, 1.4 equiv for Rh, 20 equiv
for Ru, 3.0 equiv for Ti, and 2.0 equiv for Ir.
22 Mikami, K.; Yusa, Y.; Korenaga, T. Org. Lett. in press.
23
Noyori R.
Ohkuma T.
Kitamura M.
Takaya H.
Sayo N.
Kumobayashi H.
Akutagawa S.
J. Am.
Chem. Soc.
1987,
109:
5856
The real catalyst has been suggested
to be a mono- or dihydride species (X = H
or Cl):
24a
Chowdhury RL.
Bäckvall J.-E.
J.
Chem. Soc., Chem. Commun.
1991,
1063
24b
Haack K.-J.
Hashiguchi S.
Fujii A.
Ikariya T.
Noyori R.
Angew.
Chem., Int. Ed. Engl.
1997,
36:
285
24c
Noyori R.
Hashiguchi S.
Acc. Chem. Res.
1997,
30:
97
24d
Abdur-Rashid K.
Lough AJ.
Morris RH.
Organometallics
2000,
19:
2655
24e
Abdur-Rashid K.
Faatz M.
Lough AJ.
Morris RH.
J. Am. Chem. Soc.
2001,
123:
7473
24f
Hartmann R.
Chen P.
Angew. Chem. Int. Ed.
2001,
40:
3581
25
Mikami K.
Korenaga T.
Ohkuma T.
Noyori R.
Angew. Chem. Int. Ed.
2000,
39:
3707
26
Mikami K.
Matsukawa S.
Volk T.
Terada M.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2768
27
Chavarot M.
Byrne JJ.
Chavant PY.
Pardillos-Guindet J.
Vallee Y.
Tetrahedron: Asymmetry
1998,
9:
3889
28
Ueki M.
Matsumoto Y.
Jodry JJ.
Mikami K.
Synlett
2001,
1889
BIPHEP [(2,2′-bis(diphenylphosphino)-1,1′-biphenyl]:
This ligand was also named BPBP, but contrarily to what was claimed
in the publication, it was unsuccessfully synthesized to give instead
the monophosphine derivative:
29a
Uehara A.
Bailar JC.
J. Organomet.
Chem.
1982,
239:
1
29b
Bennett MA.
Bhargava SK.
Griffiths KD.
Robertson GB.
Angew.
Chem., Int. Ed. Engl.
1987,
26:
260
29c
Desponds O.
Schlosser M.
J. Organomet. Chem.
1996,
507:
257
29d
Desponds O.
Schlosser M.
Tetrahedron Lett.
1996,
37:
47
For more details see:
30a ‘BIPHEMP’ (2,2′-bis(diphenylphosphanyl)-6,6′-dimethyl-
1,1′-biphenyl): Svensson G.
Albertsson J.
Frejd T.
Klingstedt T.
Acta Crystallogr., Sect. C
1986,
42:
1324
30b See also: Schmid R.
Cereghetti M.
Heiser B.
Schonholzer P.
Hansen
H.-J.
Helv. Chim. Acta
1988,
71:
897
30c ‘BICHEPs’[2,2′-bis(dicyclohexylphosphanyl)-6,6′-dimethyl-1,1′-biphenyl]: Chiba T.
Miyashita A.
Nohira H.
Tetrahedron Lett.
1991,
32:
4745
30d ‘MeO-BIPHEP’ [2,2′-bis(diphenyl-phosphanyl)-6,6′-dimethoxy-1,1′-biphenyl]:
Schmid R.
Foricher J.
Cereghetti M.
Schönholzer P.
Helv.
Chim. Acta
1991,
74:
370
30e See also: Schmid R.
Broger EA.
Cereghetti M.
Crameri Y.
Foricher J.
Lalonde M.
Müller RK.
Scalone M.
Schoettel G.
Zutter U.
Pure Appl.
Chem.
1996,
68:
131
30f See further: Trabesinger G.
Albinati A.
Feiken N.
Kunz RW.
Pregosin PS.
Tschoerner M.
J.
Am. Chem. Soc.
1997,
119:
6315
30g 2,2′-bis(diphenylphosphanyl)-6,6′-difluoro-1,1′-biphenyl: Jendralla H.
Li C.-H.
Paulus E.
Tetrahedron: Asymmetry
1994,
5:
1297
31
Mikami K.
Korenaga T.
Terada M.
Ohkuma T.
Pham T.
Noyori R.
Angew. Chem. Int. Ed.
1999,
38:
495
32
Mikami K.
Aikawa K.
Yusa Y.
Org.
Lett.
2002,
4:
95
33
Mikami K.
Aikawa K.
Yusa Y.
Hatano M.
Org. Lett.
2002,
4:
91
34a
Ferrocenes
Togni A.
Hayashi T.
VCH;
Weinheim:
1995.
34b
Richards CJ.
Locke AJ.
Tetrahedron:
Asymmetry
1998,
9:
2377
35
Hayashi T.
Ohno A.
Lu S.
Matsumoto Y.
Fukuyo E.
Yanagi K.
J. Am. Chem. Soc.
1994,
116:
4421
36
Kanemasa S.
Oderanotoshi Y.
Sakaguchi S.
Yamamoto H.
Tanaka J.
Wada E.
Curran DP.
J.
Am. Chem. Soc.
1998,
120:
3074
37 Configuration of the dppf chirality
is denoted by using the descriptors of chirality: (P ),
plus, clockwise and (M ), minus, anticlockwise.
38
Mikami K.
Aikawa K.
Org. Lett.
2002,
4:
99
39a
Johannsen M.
Jørgensen KA.
J. Org. Chem.
1995,
60:
5757
39b
Johannsen M.
Jørgensen KA.
Tetrahedron
1996,
52:
7321
39c
Oi S.
Kashiwagi K.
Terada E.
Ohuchi K.
Inoue Y.
Tetrahedron
Lett.
1996,
37:
6351
39d
Oi S.
Terada E.
Ohuchi K.
Kato T.
Tachibana Y.
Inoue Y.
J. Org. Chem.
1999,
64:
8660
40a
Maseras F.
Morokuma K.
J.
Comp. Chem.
1995,
16:
1170
40b
Svensson M.
Humbel S.
Froese RDJ.
Matsubara T.
Sieber S.
Morokuma K.
J. Phys.
Chem.
1996,
100:
19357
40c
Dapprich S.
Komaromi I.
Byun KS.
Morokuma K.
Frisch MJ.
J.
Mol. Struct. (THEOCHEM)
1999,
461-462:
1
40d
Vreven T.
Morokuma K.
J. Comput. Chem.
2000,
21:
1419
41 Geometry optimization was performed
with Gaussian 98. Computational details, see: Yamanaka, M.; Mikami,
K. submitted.
42
Korenaga T.
Aikawa K.
Terada M.
Kawauchi S.
Mikami K.
Adv.
Synth. Catal.
2001,
343:
284
43
Desponds O.
Schlosser M.
Tetrahedron Lett.
1996,
37:
47
44 Epimerisation of (R )-RuCl2 (XylBIPHEP)/(S ,S )-DPEN
to (S )-RuCl2 (XylBIPHEP)/(S ,S )-DPEN
was very slow at room temperature in CD2 Cl2 ,
but accelerated in 2-propanol to give a 3:1 ratio of diastereomeric
complexes within 2-3 hours (see ref.
[28 ]
).
45a
Bott G.
Field LD.
Sternhell S.
J. Am. Chem. Soc.
1980,
102:
5618
45b
Rousel C.
Liden A.
Chanon M.
Metzger J.
Sandstrom J.
J. Am.
Chem. Soc.
1976,
98:
2847
45c
Nilsson B.
Martinson P.
Olsson K.
Carter RE.
J. Am. Chem. Soc.
1974,
96:
3190
46a
Morokuma K.
Acc. Chem. Res.
1977,
10:
294
46b
Kitaura K.
Morokuma K.
Int. J. Quantum Chem.
1976,
10:
325
47
Reed AE.
Curtiss LA.
Weinhold F.
Chem.
Rev.
1988,
88:
899
Tropos catalysts
with biphenyl chirality, see:
48a
Ringwald M.
Sturmer R.
Brintzinger HH.
J.
Am. Chem. Soc.
1999,
121:
1524
48b
Chen W.
Xiao J.
Tetrahedron Lett.
2001,
42:
8737
48c
Becker JJ.
White PS.
Gagne MR.
J. Am. Chem. Soc.
2001,
123:
9478
48d
Hashihara T.
Ito Y.
Katsuki T.
Synlett
1996,
1079
48e
Hashihara T.
Ito Y.
Katsuki T.
Tetrahedron
1997,
53:
9541
48f
Miura K.
Katsuki T.
Synlett
1999,
783
48g
Pritchett S.
Walsh PJ.
J. Am. Chem. Soc.
1998,
120:
6423
48h
Balsells J.
Walsch PJ.
J. Am. Chem. Soc.
2000,
122:
1802
48i
Balsells J.
Betancort JM.
Walsch PJ.
Angew. Chem. Int. Ed.
2000,
39:
3428