References
1a
Obika S.
Nanbu D.
Hari Y.
Morio K.
In Y.
Ishida T.
Imanishi T.
Tetrahedron
Lett.
1997,
38:
8735
1b
Wengel J.
Acc.
Chem. Res.
1999,
32:
301
1c
Tarköy M.
Bolli M.
Leumann C.
Helv. Chim. Acta
1994,
77:
716
1d
Tarköy M.
Bolli M.
Schweizer B.
Leumann C.
Helv. Chim.
Acta
1993,
76:
481
2a
Meldgaard M.
Wengel J.
J.
Chem. Soc., Perkin Trans. 1
2000,
3539
2b
Herdewijn P.
Liebigs
Ann. Chem.
1996,
1337
3
Berman HM.
Olson WK.
Beveridge DL.
Westbrook J.
Gelbin A.
Demeny T.
Hsieh S.-H.
Srinivasan AR.
Schneider B.
Biophys.
J.
1992,
63:
751
4
Foloppe N.
MacKerell AD.
J.
Phys. Chem. B.
1999,
103:
10955
5a
De Mesmaeker A.
Häner R.
Martin P.
Moser H.
Acc. Chem.
Res.
1995,
28:
366
5b
Freier SM.
Altmann K.-H.
Nucleic
Acids Res.
1997,
25:
4429
6a
Rice MC.
May GD.
Kipp PB.
Parekh H.
Kmiec EB.
Plant Physiology
2000,
123:
427
6b
Cole-Strauss A.
Yoon K.
Xiang Y.
Byrne BC.
Rice MC.
Gryn J.
Holloman WK.
Kmiec EB.
Science
1996,
273:
1386
6c
Zhu T.
Peterson DJ.
Tagliani L.
St. Clair G.
Baszczynski CL.
Bowen B.
Proc. Natl. Acad. Sci. U.S.A.
1999,
96:
8768
6d
Beetham PR.
Kipp PB.
Sawycky XL.
Arntzen CJ.
May GD.
Proc. Natl. Acad. Sci. U.S.A.
1999,
96:
8774
7a
Paquette LA.
Bibart RT.
Seekamp CK.
Kahane AL.
Org. Lett.
2001,
3:
4039
7b
Paquette LA.
Owen DR.
Bibart RT.
Seekamp CK.
Org.
Lett.
2001,
3:
4043
8
Niedballa U.
Vorbrüggen H.
J. Org. Chem.
1974,
39:
3654
9 This ee is not sufficient for incorporation
of the prepared nucleosides into oligonucleotides.
10a
Becker H.
Soler MA.
Sharpless KB.
Tetrahedron
1995,
51:
1345
10b
Allevi P.
Tarocco G.
Longo A.
Anastasia M.
Cajone F.
Tetrahedron:
Asymmetry
1997,
8:
1315
11 Ee’s were determined by chiral
HPLC (Chiralcel OD-H); for analytical purpose, the enantiomer of 4 was prepared with β-AD-mix.
12 Ee of 9 was
not determined.
13 Literature precedent in a related
system suggested that NaBH4 would result in chemoselective
reduction of the epoxide at C(2′) along with reduction
of the lactone to the lactol. Inspection of the 13C
NMR data presented by the authors, however, indicates that their
results were misinterpreted: Ortuno RM.
Cardellach J.
Font J.
J. Heterocycl.
Chem.
1987,
24:
79
14
Fazio F.
Schneider MP.
Tetrahedron: Asymmetry
2000,
11:
1869
15
Fleming I.
Henning R.
Parker DC.
Plaut HE.
Sanderson PEJ.
J. Chem. Soc., Perkin Trans. 1
1995,
317
16
1α: 1H
NMR (500 MHz, CDCl3): δ = 7.95 (b,
1 H, NH), 7.74 (q, J = 1.0 Hz,
1 H, H-6), 6.38 (dd, J = 8.3
and 1.8 Hz, 1 H, H-1′), 4.09 (d, J = 5.3
Hz, 1 H, H-3′), 3.78 (dd, J = 9.4
and 7.3 Hz, 1 H, H-5′), 2.85 (ddd, J = 14.4,
8.3 and 5.3 Hz, 1 H, H-2′β), 1.92 [d, J = 1.0 Hz, 3 H, CH3-C(5)],
1.83 (dd, J = 14.4 and 1.8 Hz,
1 H, H-2’α), 1.5-2.1 (m, 6 H, H-6′,
H-7′,
H-8′), 0.97 (m, 18 H, CH
3
CH2Si),
0.62 (m, 12 H, CH3
CH
2
Si). The configuration of C-1′ was
established by NOE: Both H-1′ and H-3′ show a
strong NOE with H-2′β. No NOE was observed between
H-3′ and H-6. Furthermore, a strong NOE was observed between
H-3′ and H-5′ proving the configuration of C-3′ and
C-5′ given in Scheme
[4]
. 13C NMR
(125 MHz, CDCl3, as obtained from the HSQC and HMBC spectra): δ = 163.7
(C-4), 150.3 (C-2), 137.6 (C-6), 109.7 (C-5), 97.8 (C-4′),
85.5 (C-1′), 78.3 (C-5′), 75.6 (C-3′), 42.9
(C-2′), 31.9 and 29.4 (C-8′ and C-6′),
17.9 (C-7′), 12.4 (CH3-C-5), 6.7 (CH
3
CH2Si),
4.9 (CH3
CH
2
Si). ESI-MS: 511 (M + H+);
509 (M - H+).
1β: 1H
NMR (500 MHz, CDCl3): δ = 8.01 (b,
1 H, NH), 8.00 (q, J = 1.0 Hz,
1 H, H-6), 6.28 (dd, J = 7.8
and 5.5 Hz, 1 H, H-1′), 4.23 (dd, J = 5.6
and 3.0 Hz, 1 H, H-3′), 3.91 (dd, J = 9.5
and 8.3 Hz, 1 H, H-5′), 2.25 (ddd, J = 12.9,
5.5 and 3.0 Hz, 1 H, H-2′α), 2.11 (ddd, J = 12.9, 7.8 and 5.6 Hz, 1
H,
H-2′β), 1.94 [d, J = 1.0 Hz, 3 H, CH3-C(5)],
1.5-2.1 (m, 6 H, H-6′, H-7′, H-8′),
0.97 (m, 18 H, CH
3
CH2Si),
0.62 (m, 12 H, CH3
CH
2
Si). The configuration of C-1′ was
established by NOE: H-1′ shows a strong NOE with H-2′α,
and H-3′ a strong NOE with H-2′β. A weak
NOE was observed between H-3′ and H-6. Furthermore, a strong
NOE was observed between H-3′ and H-5′ proving
the configuration of C-3′ and C-5′ given in Scheme
[4]
. 13C
NMR (125 MHz, CDCl3, as obtained from the HSQC and HMBC
spectra):
δ = 163.7 (C-4), 150.3 (C-2),
136.6 (C-6), 109.7 (C-5), 95.7 (C-4′), 84.4 (C-1′),
76.9 (C-5′), 74.4 (C-3′), 41.8 (C-2′),
31.4 and 29.2 (C-8′ and C-6′), 17.8 (C-7′),
12.4 (CH
3
-C-5),
6.7 (CH
3
CH2Si),
4.9 (CH3
CH
2
Si). ESI-MS: 511(M + H+);
509 (M - H+).
17
Hehre WJ.
Yu J.
Klunzinger PE.
Lou L.
Spartan
Wavefunction,
Inc.;
Irvine, CA:
1991.
18
Grzeskowiak K.
Yanagi K.
Prive GG.
Dickerson RE.
J. Biol. Chem.
1991,
266:
8861