Semin Thromb Hemost 2002; 28(4): 335-342
DOI: 10.1055/s-2002-34302
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Chemical Derivatization as a Strategy to Study Structure-Activity Relationships of Glycosaminoglycans

Benito Casu, Annamaria Naggi, Giangiacomo Torri
  • G. Ronzoni Institute for Chemical and Biochemical Research, Milan, Italy
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
23. September 2002 (online)

ABSTRACT

Sulfated glycosaminoglycans (GAGs) are amenable to a number of chemical modifications that modulate their biological activity. N-sulfate groups can be exposed and N-acylated (usually N-acetylated), specific O-sulfate groups can be removed, and free hydroxyl groups (either preexisting in the original GAG or exposed by desulfation) can be sulfated. Heparin/heparan sulfate, chondroitin sulfate, and dermatan sulfate have been variously desulfated or sulfated to afford novel GAGs with protein binding and associated biological properties different from those of the original GAGs. Regiospecific sulfation of N-acetyl heparosan (E. coli K5 polysaccharide) afforded a number of derivatives, some endowed with antithrombotic activity and others with antimetastatic properties. Most of the activities could be correlated with typical sulfation patterns along each GAG backbone. Glycol splitting of nonsulfated glucuronic residues (including a critical residue in the pentasaccharide sequence of the active site for antithrombin) leads to substantial loss of anticoagulant activity of heparin. Partial removal of sulfate groups at position 2 of iduronic acid residues followed by glycol splitting of all nonsulfated uronic acid residues afforded nonanticoagulant, antiangiogenic heparins.

REFERENCES

  • 1 Kjellén L, Lindahl U. Proteoglycans: structure and interactions.  Ann Rev Biochem . 1991;  60 443-475
  • 2 Lindahl U. Heparan sulfate: a polyanion with multiple messages.  Pure Appl Chem . 1997;  69 1897-1902
  • 3 Casu B, Lindahl U. Structure and biological interactions of heparin and heparan sulfate.  Adv Carbohydr Chem Biochem . 2001;  57 159-206
  • 4 Lane D A, Björk I, Lindahl U. Heparin and Related Polysaccharides.  New York: Plenum Press 1992
  • 5 Lindahl U, Lidholt K, Spillmann D, Kjellén L. More to ``heparin'' than anticoagulation.  Thromb Res . 1994;  75 1-32
  • 6 Harenberg J, Casu B. Nonanticoagulant Actions of Glycosaminoglycans.  New York: Plenum Press; 1996
  • 7 Lever R, Page C P. Novel development opportunities for heparin.  Nature Rev Drug Discov . 2002;  2 140-148
  • 8 Casu B. Protein binding of sulfated glycosaminoglycans: searching for specificity. In: Harenberg J, Casu B, eds. Nonanticoagulant Actions of Glycosaminoglycans New York: Plenum Press 1996: 89-99
  • 9 Conrad H E. Heparin Binding Proteins.  New York: Academic Press; 1998
  • 10 Hileman R E, Fromm J R, Weiler J M, Linhardt R J. Glycosaminoglycan-protein interactions: definition of consensus sites in glycosaminoglycan binding proteins.  Bioessays . 1998;  20 156-167
  • 11 Van Boeckel A A C, Petitou M. The unique antithrombin binding domain of heparin: a lead to new synthetic antithrombotics.  Angew Chem Int Ed Engl . 1993;  32 1671-1818
  • 12 Petitou M, Hérault J-P, Bernat A. Synthesis of thrombin-inhibiting heparin mimetics without side effects.  Nature . 1999;  398 417-422
  • 13 Casu B, Torri G, Naggi A. Modulation of sulfation patterns of glycosaminoglycans. In: Fraser-Reid B, Tatsuta K, Thiem J, eds. Glycoscience Chemistry and Chemical Biology. Vol 3. Heidelberg: Springer Verlag; 2000: 1895-1904
  • 14 Torri G. New NMR spectroscopic approaches for structural analysis of glycosaminoglycans. In: Harenberg J, Casu B, eds. Nonanticoagulant Actions of Glycosaminoglycans New York: Plenum Press 1996: 15-25
  • 15 Casu B, Guerrini M, Naggi A. Characterization of sulfation patterns of beef and pig mucosal heparins by nuclear magnetic resonance spectroscopy.  Arzneim Forsch Drug Res . 1999;  46 472-477
  • 16 Guerrini M, Bisio A, Torri G. Combined quantitative 1H and 13C nuclear magnetic resonance spectroscopy for characterization of heparin preparations.  Semin Thromb Hemost . 2001;  27 473-482
  • 17 Linhardt R J, Wang H, Ampofo S A. New methodologies in heparin structure analysis and the generation of LMW heparins. In: Lane DA, Björk I, Lindahl U, eds. Heparin and Related Polysaccharides New York: Plenum Press 1992: 37-47
  • 18 Thurnbull J H, Hopwood J T, Gallagher A. Strategy for rapid sequencing of heparan sulfate and heparin saccharides.  Proc Natl Acad Sci USA . 1999;  96 2698-2703
  • 19 Vivès R R, Pye D A, Salvimirta M. Sequence analysis of heparan sulphate and heparin oligosaccharides.  Biochem J . 1999;  339 767-773
  • 20 Venkataraman G, Shriver Z, Raman R, Sasisekharan R. Sequencing complex polysaccharides.  Science . 1999;  286 537-542
  • 21 Inohue Y, Nagasawa K. Selective N-desulfation of heparin with dimethyl sulfoxide containing water or methanol.  Carbohydr Res . 1976;  46 87-95
  • 22 Levvy G A, McAllan A. The N-acetylation and estimation of hexosamines.  Biochem J . 1959;  73 127-132
  • 23 Shaklee P N, Conrad H E. Hydrazinolysis of heparin and other glycosaminoglycans.  Biochem J . 1984;  217 187-197
  • 24 Loyd A G, Embery G, Fowler J. Preparation of [35S]sulfamate derivatives for studies on heparin degrading enzymes of mammalian origin.  Biochem Pharmacol . 1971;  20 637-664
  • 25 Casu B. Structure and biological activity of heparin.  Adv Carbohydr Chem Biochem . 1985;  43 51-132
  • 26 Naggi A, Torri G, Casu B. ``Supersulfated'' heparin fragments, a new type of low-molecular weight heparin.  Biochem Pharmacol . 1986;  36 1895-1900
  • 27 Nagasawa K, Uchiyama H, Wajima N. Chemical sulfation of preparations of chondroitin 4- and 6-sulfate and dermatan sulfate. Preparation of chondroitin sulfate E-like materials from chondroitin 4-sulfate.  Carbohydr Res . 1986;  158 195-190
  • 28 Ogamo A, Metori A, Uchiyama H, Nagasawa K. Reactivity toward chemical sulfation of hydroxyl groups of heparin.  Carbohydr Res . 1989;  193 165-172
  • 29 Naggi A, Torri G, Angiuli P. Sulfamino-galactosaminoglycans, a new class of semi-synthetic polysaccharides Preparation, characterization, and lipase-releasing properties. In: Biomedical and Biotechnological Advances in Industrial Polysaccharides New York: Gordon & Breach Science Publisher 1989: 101-108
  • 30 Naggi A. Simulation of glycosaminoglycan structure by chemical modifications of E coli polysaccharides K5 and K4. In: Harenberg J, Casu B, eds. Nonanticoagulant Actions of Glycosaminoglycans New York: Plenum Press 1996: 59-64
  • 31 Casu B, Grazioli G, Razi N. Heparin-like compounds prepared by chemical modification from E K5. Carbohydr Res .  1994;  263 271-284
  • 32 Razi N, Feyzi E, Björk I. Structural and functional properties of heparin analogues obtained by chemical sulfation of Escherichia coli capsular polysaccharide K5.  Biochem J . 1995;  309 465-472
  • 33 Casu B, Grazioli G, Hannesson H H. Biologically active heparan sulfate-like species by combined chemical and enzymic modification of Escherichia coli polysaccharide K5.  Carbohydr Lett . 1994;  1 107-114
  • 34 Naggi A, Torri G, Casu B. Towards a biotechnological heparin through a combined chemical and enzymatic modification of the Escherichia coli K5 polysaccharide.  Semin Thromb Hemost . 2001;  27 437-441
  • 35 Naggi A, De Cristofano A, Bisio A., et al. Generation of anti-factor Xa active, 3-O-sulfated glucosamine-rich sequences by controlled desulfation of oversulfated heparins.  Carbohydr Res . 2001;  336 283-290
  • 36 Liu Z, Perlin A S. Regioselectivity in sulfation of some chemically-modified heparins, and observations on their cationic-binding characteristics.  Carbohydr Res . 1992;  236 121-133
  • 37 Kovenski J, Cirelli A F. Chemical modification of glycosaminoglycans. Selective 2-sulfation of D-glucuronic acid in heparan sulfates.  Carbohydr Res . 1997;  303 119-122
  • 38 Jaseja M, Rej R N, Sauriol F, Perlin A S. Novel regio- and stereoselective modifications of heparin in alkaline solution. Nuclear magnetic resonance spectroscopic evidence.  Can J Chem . 1989;  67 1449-1456
  • 39 Rej R N, Perlin A S. Base-catalyzed conversion of the α-L-iduronic acid 2-sulfate unit of heparin into a unit of α-L-galacturonic acid, and related reactions.  Carbohydr Res . 1992;  200 437-447
  • 40 Piani S, Casu B, Marchi E. Alkali-induced optical rotation changes in heparins and heparan sulfates and their relation to iduronic acid containing sequences.  J Carbohydr Chem . 1993;  12 507-521
  • 41 Holme K R, Liang W, Yang Z. A detailed evaluation of the structural and biological effects of alkaline O-desulfation reactions of heparin. In: Harenberg J, Casu B, eds. Nonanticoagulant Actions of Glycosaminoglycans New York: Plenum Press 1996: 139-162
  • 42 Santini F, Bisio A., Guerrini M. Modification under basic conditions of the minor sequences of heparin containing 2,3 or 2,3,6 sulfated D-glucosamine residues.  Carbohydr Res . 1997;  302 103-108
  • 43 Casu B, Petitou M, Provasoli M, SinaĀ P. Conformational flexibility: a new concept for explaining binding and biological activity of iduronic acid-containing glycosaminoglycans.  Trends Biochem Sci . 1998;  13 221-225
  • 44 Casu B. Structure, shape and functions of glycosaminoglycans. In: Harenberg J, Heene DL, Stehle G, Schettler G, eds. New Trends in Haemostasis Heidelberg: Springer Verlag 1990: 2-11
  • 45 Casu B, Guerrini M, Naggi A. Short heparin sequences spaced by glycol-split uronate residues are antagonists of fibroblast growth factor-2 and angiogenesis inhibitors (in press).  Biochemistry. 2002; 
  • 46 Pisano C, Cervoni M L, Chiarucci I. Antiangiogenic and antitumoral activity of novel heparin derivatives devoid of anticoagulant effects. National Cancer Institute-European Organization for Research and Treatment of Cancer-American Association for Cancer Research Symposium (NCI-EORTC- AACR), 2002 (Abst)
  • 47 Bisio A, Casu B, Menozzi C. Physico-chemical characterization and interaction with heparin cofactor-2 of ``disulfated'' galactosaminoglycans. Proceedings 3rd Italian Carbohydrate Symposium, Grado, 1991;86 (Abst)
  • 48 Maruyama T, Toida T, Imanari T, Yu G, Linhardt R J. Conformational changes and anticoagulant activity of chondroitin sulfate following its O-sulfonation.  Carbohydr Res . 1998;  306 35-43
  • 49 Gigli M, Ghiselli G, Torri G. A comparative study of low-density lipoprotein interaction with glycosaminoglycans.  Biochim Biophys Acta . 1993;  1167 211-217
  • 50 Kostoulas G, Horler D, Naggi A. Electrostatic interactions between human leukocyte elastase and sulfated glycosaminoglycans: physiological implications.  Biol Chem . 1997;  378 1481-1489
  • 51 Pye D A, Vivès R R, Hyde P, Gallagher J T. Regulation of FGF-1 mitogenic activity by heparan sulfate oligosaccharides is dependent on specific structural features: differential requirements for the modulation of FGF-1 and FGF-2.  Glycobiology . 2000;  10 1183-1192
  • 52 Lundin L, Larsson H, Kreuger J. Selectively desulfated heparin inhibits fibroblast growth factor-induced mitogenicity and angiogenesis.  J Biol Chem . 2000;  275 24653-24600
  • 53 Naggi A, Perez M, Torri G. Modulation of heparanase-inhibiting activity of heparin through selective desulfation, graded N-acetylation, and glycol splitting. Abstract 21st International Carbohydr Symposium, Cairns, Australia 2002