Zusammenfassung
Einleitung: Die pharmakoresistente mesiale Temporallappenepilepsie (mTLE) geht häufig mit einer
Ammonshornsklerose (AHS) einher. Die AHS ist durch Verlust an Nervenzellen und strukturelle
Veränderungen der Astrozyten (Gliose) charakterisiert. Wir vermuteten, dass diese
Astrozyten ihre Fähigkeit verloren haben, Kaliumionen mittels bariumsensitiver K+ -Kanäle aufzunehmen und umzuverteilen. Deshalb untersuchten wir die Wirkung von Barium
auf evozierte Anstiege der extrazellulären Kaliumkonzentration (K+ )o im Hippokampusgewebe von Epilepsiepatienten, epileptischen Ratten und nichtepileptischen
Kontrollratten. Methodik: Die Veränderungen evozierter K+ -Signale durch Barium wurden mit Hilfe zweikanaliger K+ -selektiver Referenz Mikroelektroden in der CA1-Region akuter Hirnschnitte aus Hippokampusresektaten
mit und ohne AHS und aus dem Hippokampus von Ratten (mit chronischer Epilepsie [Pilokarpin-Modell],
mit Kindling-Epilepsie und ohne Epilepsie) gemessen. Die Auslösung der Signale erfolgte
durch repetitive elektrische Reizung des Alveus oder durch K+ -Iontophorese. Ergebnisse: Barium verursachte eine Vergrößerung iontophoretisch evozierter K+ -Signale in der CA1 von Kontrolltieren und von Hippokampusresektaten ohne AHS. Barium
vergrößerte auch die durch antidrome Reizung ausgelösten K+ -Signale in der nichtsklerotischen CA1 von Epilepsiepatienten, Ratten mit Kindling-Epilepsie
und Kontrollratten. Im Gegensatz dazu war in der CA1 von Resektaten mit AHS und im
Gewebe chronisch epileptischer Ratten der Bariumeffekt nicht nachweisbar bzw. stark
verringert. Schlussfolgerungen: Der Bariumeffekt auf die evozierten K+ -Signale reflektiert die gliale Pufferkapazität für die während neuronaler Aktivität
freigesetzten Kaliumionen. Das Fehlen des Bariumeffektes bei humaner TLE mit AHS lässt
auf eine Verminderung der glialen Pufferkapazität und damit auf eine mögliche Störung
der K+ -Regulation schließen.
Abstract
Introduction: Pharmacoresistant mesial temporal lobe epilepsy (mTLE) is frequently accompanied
by Ammon's horn sclerosis (AHS), characterised by nerve cell loss and structural alteration
of astrocytes („gliosis”). We supposed that such astrocytes may have lost their capability
to take up and to redistribute potassium ions by barium-sensitive K+ -channels, and hence we investigated the effects of barium on evoked rises of (K+ )o in hippocampal tissue of epilepsy patients, epileptic rats and control rats. Methods: Changes of evoked K+ signals by barium were measured using double-barrelled K+ selective reference microelectrodes placed into the CA1-region of brain slices from
hippocampal specimens with and without AHS, from hippocampi of chronic epileptic rats
(Pilocarpine-model), rats with Kindling epilepsy, or control rats. The K+ signals were elicited by repetitive electrical stimulation of the alveus or by K+ ionophoresis. Results: Barium caused an augmentation of ionophoretically evoked K+ signals in the CA1 pyramidal cell layer from control rats and from hippocampal specimens
without AHS but not from those with AHS. Barium also augmented K+ signals elicited by antidromic stimulation in the non-sclerotic CA1 of epilepsy-patients,
of rats with Kindling epilepsy, and control rats. In contrast, the barium effect was
strongly reduced in the CA1 of hippocampal specimens with AHS and of hippocampal tissue
of pilocarpine treated chronic epileptic rats. Conclusions: The effect of barium on evoked K+ signals reflects the glial K+ buffer capacity for potassium ions released during neuronal activity. The very small
effect of barium on K+ signals in human TLE with AHS indicates a loss of buffer capacity and, thereby, a
possible alteration of the K+ regulation.
Key words
Mesial temporal lobe epilepsy - K+ regulation - glia - hippocampus - CA1
Literatur
1
Sommer W.
Erkrankung des Ammonshorns als aetiologisches Moment der Epilepsie.
Archiv f Psychiatrie.
1880;
X 3. Heft
631-675
2
Bratz D.
Ammonshornbefunde bei Epileptischen.
Archiv f Psychiatrie.
1899;
31
820-836
3
Margerison J H, Corsellis J AN.
Epilepsy and the temporal lobes.
Brain.
1966;
89
499-530
4
Zentner J, Hufnagel A, Wolf H K, Ostertun B, Behrens E, Campos M G, Solymosi L, Elger C E,
Wiestler O D, Schramm J.
Surgical treatment of temporal lobe epilepsy: Clinical, radiological, and histopathological
findings in 178 patients.
J Neurol Neurosurg Psychiatry.
1995;
58
666-673
5 Engel J, Van Ness P C, Rasmussen T B, Ojineau L M.
Outcome with respect to epileptic seizures. In: Engel J jr (ed) Surgical Treatment of the Epilepsies. New York; Raven Press 1993:
609-621
6
Mathern G W, Babb T L, Vickrey B G, Melendez M, Pretorius J K.
The clinical-pathogenic mechanisms of hippocampal neuron loss and surgical outcomes
in temporal lobe epilepsy.
Brain.
1995;
118
105-118
7
Mathern G W, Babb T L, Leite J P, Pretorius J K, Yeoman K M, Kuhlman P A.
The pathogenic and progressive features of chronic human hippocampal epilepsy.
Epilepsy Res.
1996;
26
151-161
8
Cavalheiro E A.
The pilocarpine model of epilepsy.
Ital J Neurol Sci.
1995;
16
33-37
9
Ben-Ari Y.
Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance
to human temporal lobe epilepsy.
Neuroscience.
1985;
14
375-403
10
Lothman E W, Bertram E H, Bekenstein J W, Perlin J B.
Self-sustaining limbic status epilepticus induced by „continuous” hippocampal stimulation:
electrographic and behavioral characteristics.
Epilepsy Res.
1989;
3
107-119
11
Goddard G V, McIntyre D C, Leech C K.
A permanent change in brain function resulting from daily electrical stimulation.
Exp Neurol.
1969;
25
295-330
12
Löscher W, Rundfeldt C.
Kindling as a model og drug-resistant partial epilepsy: selection of phenytoin-resistant
and non-resistant rats.
J Pharmacol Exp Ther.
1991;
258
483-489
13
Babb T L, Brown W J, Pretorius J K, Davenport C J, Lieb J P, Crandall P H.
Temporal lobe volumetric cell densities in temporal lobe epilepsy.
Epilepsia.
1984;
25
729-740
14
Scheffler B, Fassner A, Beck H, Wolf H K, Wiestler O D, Blümcke I.
Hippocampal loss of tenascin boundaries in Ammon's horn sclerosis.
Glia.
1997;
19
35-46
15
Blümcke I, Beck H, Lie A A, Wiestler O D.
Molecular neuropathology of human mesial temporal lobe epilepsy.
Epilepsy Research.
1999;
36
205-223
16
Pollen D A, Trachtenberg M C.
Neuroglia: gliosis and focal epilepsy.
Science.
1970;
167
1252-1253
17
Heinemann U, Lux H D.
Ceiling of stimulus induced rises in extracellular potassium concentration in the
cerebral cortex of cat.
Brain Res.
1977;
120
231-249
18
Heinemann U, Louvel J.
Changes in (Ca2+ )o and (K+ )o during repetitive electrical stimulation and during pentetrazol induced seizure activity
in the sensorimotor cortex of cats.
Pflugers Arch.
1983;
398
310-317
19
Perez-Pinzon M A, Tao L, Nicholson C.
Extracellular potassium, volume fraction, and tortuosity in rat hippocampal CA1, CA3,
and cortical slices during ischemia.
J Neurophysiol.
1995;
74
565-573
20
Kraig R P, Nicholson C.
Extracellular ionic variations during spreading depression.
Neuroscience.
1978;
3
1045-1059
21
Leschinger A, Stabel J, Igelmund P, Heinemann U.
Pharmacological and electrographic properties of epileptiform activity induced by
elevated K+ and lowered Ca2+ and Mg2+ concentration in rat hippocampal slices.
Exp Brain Res.
1993;
96
230-240
22
Schweitzer J S, Patrylo P R, Dudek F E.
Prolonged field bursts in the dentate gyrus: dependence on low calcium, high potassium,
and nonsynaptic mechanisms.
J Neurophysiol.
1992;
68
2016-2025
23
Traynelis S F, Dingledine R.
Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice.
J Neurophysiol.
1988;
59
259-276
24
Ballanyi K, Grafe P, ten Bruggencate G.
Ion activities and potassium uptake mechanisms of glial cells in guinea-pig olfactory
cortex slices.
J Physiol (Lond).
1987;
382
159-174
25
Dietzel I, Heinemann U, Lux H D.
Relations between slow extracellular potential changes, glial potassium buffering,
and electrolyte and cellular volume changes during neuronal hyperactivity in cat brain.
Glia.
1989;
2
25-44
26
Chen K C, Nicholson C.
Spatial buffering of potassium ions in brain extracellular space.
Biophys J.
2000;
78
2776-2797
27
Makhina E N, Kelly A J, Lopatin A N, Mercer R W, Nichols C G.
Cloning and expression of a novel human brain inward rectifier potassium channel.
J Biol Chem.
1994;
269
20468-20474
28
Ransom C B, Sontheimer H.
Biophysical and pharmacological characterization of inwardly rectifying K+ currents in rat spinal cord astrocytes.
J Neurophysiol.
1995;
73
333-346
29
Bordey A, Sontheimer H.
Properties of human glial cells associated with epileptic seizure foci.
Epilepsy Research.
1998;
32
286-303
30
Hinterkeuser S, Schröder W, Hager G, Seifert G, Blümcke I, Elger C E, Schramm J, Steinhäuser C.
Astrocytes in the hippocampus of patients with temporal lobe epilepsy: display changes
in potassium conductances.
Eur J Neurosci.
2000;
12
2087-2096
31
Gabriel S, Kivi A, Kovács R, Lehmann T-N, Lanksch W R, Meencke H J, Heinemann U.
Effects of barium on stimulus-induced changes in (K+ )o and field potentials in dentate gyrus and area CA1 of human epileptic hippocampus.
Neurosci Lett.
1998;
249
91-94
32
Kivi A, Lehmann T-N, Kovács R, Eilers A, Jauch R, Meencke H J, von Deimling A, Heinemann U,
Gabriel S.
Effects of barium on stimulus-induced rises of (K+ )o in human epileptic non-sclerotic and sclerotic hippocampal area CA1.
Eur J Neurosci.
2000;
12
2039-2048
33
Gabriel S, Eilers A, Kivi A, Kovács R, Schulze K, Lehmann T-N, Heinemann U.
Effects of barium on stimulus-induced changes in extracellular potassium concentration
in area CA1 of hippocampal slices from normal and pilocarpine-treated epileptic rats.
Neurosci Lett.
1998;
242
9-12
34
Eilers A, Schulze K, Kivi A, Lehmann T-N, Gabriel S, Heinemann U.
Spatial K+ buffering in area CA1 of kindled and chronic epileptic rats in vitro (Abstract).
Göttingen: Neurobiol. Report.
1999;
Vol II
529
35
Jauch R, Windmüller O, Lehmann T-N, Heinemann U, Gabriel S.
Effects of barium, furosemide, ouabaine and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic
acid (DIDS) on ionophoretically induced changes in extracellular potassium concentration
in hippocampal slices from rat and from patients with epilepsy.
Brain Res.
2002;
925
18-27
36
Gabriel S, Kivi A, Eilers A, Kovács R, Heinemann U.
Effects of barium on stimulus-induced rises in (K+ )o in juvenile rat hippocampal area CA1.
NeuroReport.
1998;
9
2583-2587
37
Kressin K, Kuprijanova E, Jabs R, Seifert G, Steinhäuser C.
Developmental regulation of Na+ and K+ conductances in glial cells of mouse hippocampal brain slices.
Glia.
1995;
15
173-187
38
Bordey A, Sontheimer H.
Postnatal development of ionic currents in rat hippocampal astrocytes in situ.
J Neurophysiol.
1997;
78
461-477
39
Baumgartner C, Elger C E, Hufnagel A, Oppel F, Runge U, Schramm J. et al .
Qualitätsrichtlinien auf dem Gebiet der prächirurgischen Epilepsiediagnostik und operativen
Epilepsietherapie.
Akt Neurologie.
2000;
27
88-89
40
European Federation of Neurological Societies Task Force .
Pre-surgical evaluation for epilepsy surgery - European Standards.
European Journal of Neurology.
2000;
7
119-122
41
Lux H D, Neher E.
The equilibration time course of (K+ )o in cat cortex.
Exp Brain Res.
1973;
17
190-205
42
Sihra T S, Piomelli D, Nichols R A.
Barium evokes glutamate release from rat brain synaptosomes by membrane depolarization:
Involvement of K+ , Na+ , and Ca2+ channels.
J Neurochem.
1993;
61
1220-1230
43
Hotson J R, Prince D A.
Penicillin- and barium-induced epileptiform bursting in hippocampal neurons: actions
on Ca2+ and K+ potentials.
Ann Neurol.
1981;
10
11-17
44 Prince D A, Benninger C, Kadis J.
Evoked ionic alterations. In: Syková E, Hník P, Vyklický (eds) Ion-Selective Microelectrodes. New York; Plenum
Press 1981: 247-259
45
Grisar T, Frere J-M, Franck G.
Effect of K+ -ions on kinetic properties of the (Na+ , K+ )-ATPase (EC 3.6.1.3) of bulk isolated glial cells, perikarya and synaptosomes from
rabbit brain cortex.
Brain Res.
1979;
165
87-103
46
Walz W, Hinks E C.
Carrier-mediated KCl accumulation accompanied by water movements is involved in the
control of physiological K+ -levels by astrocytes.
Brain Res.
1985;
343
44-51
47
Walz W, Wuttke W A.
Independent mechanisms of potassium clearance by astrocytes in gliotic tissue.
J Neurosci Res.
1999;
56
595-603
48
Heinemann U, Gabriel S, Jauch R, Schulze K, Kivi A, Eilers A, Kovásc R, Lehmann T-N.
Alterations of glial cell function in temporal lobe epilepsy.
Epilepsia.
2000;
41, Suppl 6
185-189
49
Lemos T, Cavalheiro E A.
Suppression of pilocarpine-induced status epilepticus and the late development of
epilepsy in rats.
Exp Brain Res.
1995;
102
423-428
50
Schmidt-Kastner R, Ingvar M.
Laminar damage of neurones and astrocytes in neocortex and hippocampus of rats after
long-lasting status epilepticus induced by pilocarpine.
Epilepsy Res.
1996;
Suppl 12
309-316
51
Nixdorf-Bergweiler B E, Albrecht D, Heinemann U.
Developmental changes in the number, size and orientation of GFAP-positive cells in
the CA1 region of rat hippocampus.
Glia.
1994;
12
180-195
52
Hablitz J J, Heinemann U.
Extracellular K+ and Ca2+ changes during epileptiform discharges in the immature rat neocortex.
Brain Res.
1987;
433
299-303
Prof. Dr. med. Uwe Heinemann
Johannes-Müller-Institut für Physiologie · Charité · Campus Mitte · Humboldt-Universität
zu Berlin
Tucholskystraße 2
10117 Berlin