References
Selected references:
1a
Arai T.
Sasai H.
Yamaguchi K.
Shibasaki M.
J. Am. Chem. Soc.
1998,
120:
441
1b
Arai S.
Hamaguchi S.
Shioiri T.
Tetrahedron
Lett.
1998,
39:
2997
1c
Davis AA.
Rosén JJ.
Kiddle JJ.
Tetrahedron Lett.
1998,
39:
6263
1d
Takacs JM.
Jaber MR.
Clement F.
Walters C.
J. Org.
Chem.
1998,
63:
6757
1e
Tullis JS.
Vares L.
Kann N.
Norrby P.-O.
Rein T.
J.
Org. Chem.
1998,
63:
8284
1f
Shen Y.
Ni J.
Li P.
Sun J.
J. Chem. Soc., Perkin Trans. 1
1999,
509
1g
Iorga B.
Eymery F.
Savignac P.
Synthesis
2000,
576
1h
Tago K.
Kogen H.
Org. Lett.
2000,
2:
1975
1i
Sun S.
Turchi IJ.
Xu D.
Murray WV.
J. Org. Chem.
2000,
65:
2555
1j
Vaes L.
Rein T.
Org. Lett.
2000,
2:
2611
1k
Reiser U.
Jauch J.
Synlett
2001,
90
1l
Crist RM.
Reddy PV.
Borhan B.
Tetrahedron Lett.
2001,
42:
619
1m
Kawasaki T.
Nonaka Y.
Watanabe K.
Ogawa A.
Higuchi K.
Terashima R.
Masuda K.
Sakamoto M.
J. Org. Chem.
2001,
66:
1200
2
Muthiah C.
Praveen Kumar K.
Aruna Mani C.
Kumara Swamy KC.
J. Org. Chem.
2000,
65:
3733
3
Kumaraswamy S.
Selvi RS.
Kumara Swamy KC.
Synthesis
1997,
207
4
Praveen Kumar K.
Muthiah C.
Kumarswamy S.
Kumara Swamy KC.
Tetrahedron
Lett.
2001,
42:
3219
Selected references:
5a Review: Basavaiah D.
Rao PD.
Hyma RS.
Tetrahedron
1996,
52:
8001
5b
Basavaiah D.
Pandiaraju S.
Tetrahedron
1996,
52:
2261
5c
Aggarwal VK.
Mereu A.
Tarver GJ.
McCague R.
J. Org.
Chem.
1998,
63:
7183
5d
Hayase T.
Shibata T.
Soai K.
Wakatsuki Y.
Chem. Commun.
1998,
1271
5e
Shi M.
Jiang J.-K.
Feng Y.-S.
Org.
Lett.
2000,
2:
2397
5f
Basavaiah D.
Kumaragurubaran N.
Sharada DS.
Tetrahedron Lett.
2001,
42:
85
6
Janecki T.
Bodalski R.
Synthesis
1990,
799
7 The Baylis-Hillman adducts
ArC(R)(OH)-C(X)=CH2 were prepared
by literature methods.
[5a]
8 Typical procedure for 6:
To a stirred solution of (Ph)CH(OH)-C(CN)=CH2 (1.50
g, 9.5 mmol) and Et3N (0.96 g, 9.5 mmol) in toluene (50
mL), (OCH2CMe2CH2O)PCl(1) (1.6 g, 9.5 mmol) was added dropwise
at 0 °C under nitrogen; stirring was continued for 30 min.
The precipitate was filtered off, washed with diethyl ether, and
the washings added to the filtrate. The combined filtrate was evaporated
to dryness and the residue was heated at 110 °C under nitrogen
for 3 h by which time rearrange-ment had taken place. The isomers
of compound 6 (˜1:1; total yield
80%) so obtained were separated by column chromato-graphy
(hexane-ethyl acetate). Isomer a (higher Rf):
mp 114-116 °C; IR (cm-1)
2212, 1604; 1H NMR δ 1.05, 1.14 (2
s, 6 H, 2 CH
3), 3.08 [d, 2
J(PH) = 22.2 Hz, 2 H, PCH
2], 3.89-4.30
(m, 4 H, OCH
2), 7.39-7.54
(m, 6 H, olefinic-H + Ar-H); 13C
NMR δ 21.4, 21.5, 27.0 [d, 1
J(PC) = 139.0 Hz], 32.6 [d, 3
J(PC) = 6.2 Hz], 75.7 [d, 2
J(PC) = 6.2 Hz], 104.5, 104.8,
119.5, 128.8, 129.1, 130.0, 132.9, 148.1, 148.3; 31P NMR δ 17.6.
Anal. Calcd for C15H18NO3P: C,
61.84; H, 6.24; N, 4.81. Found: C, 61.76; H, 6.18; N, 4.74. Isomer b (lower Rf): Mp 128-130 °C; 1H
NMR δ 1.03, 1.07 (2 s, 6 H, 2 CH
3),
3.01 [d, 2
J(PH) = 21.3
Hz, 2 H, PCH
2], 3.85-4.22 (m,
4 H, OCH
2), 7.10-7.90
(m, 6 H, olefinic-H + Ar-H); 13C NMR δ 21.4,
31.6 [d, 1
J(PC) = 138.0
Hz], 32.5 [d, 3
J(PC) = 6.2 Hz], 75.6 [d, 2
J(PC) = 6.2 Hz], 100.1,
100.3, 118.0, 128.8, 130.6, 133.1, 148.0, 148.2; 31P
NMR δ 17.8. Anal. Calcd for C15H18NO3P:
C, 61.84; H, 6.24; N, 4.81. Found: C, 61.66; H, 6.16; N, 4.70. The
HWE reactions of the phosphonates with the aldehydes were conducted
in THF using NaH as the base (supplementary material is available from
the authors).
9
Basavaiah D.
Kumaragurubaran N.
Padmaja K.
Synlett
1999,
1630
10 Spectral data for compound 9 (mp 70-72 °C): 1H
NMR δ 0.78, 1.28 (2s, 6 H, 2 CH
3),
3.40 (˜t, 2
J ˜ 3
J ˜ 10.2 Hz, 2 H, OCH
2), 4.24 (d, 3
J ˜ 10.2 Hz, 2 H, OCH
2), 4.56 [dd, 3
J(PH) ˜ 10.2 Hz, 4
J(HH) ˜ 1.0 Hz, 2 H, OCH
2], 7.21 [s,
1 H, CH=C(CN)], 7.41-7.82
(m, 5 H, Ar-H); 13C
NMR δ 22.3, 22.7, 32.7 [d, 2
J(PC) = 5.0 Hz], 64.2 [d, 2
J(PC) = 20.5 Hz], 69.2,
108.6, 117.4, 128.2, 128.9, 129.0, 130.8, 132.8, 144.7; 31P
NMR δ 121.7. Compound 10 (mp:
168-170 °C). 1H NMR δ 0.95,
1.05 (2 s, 6 H, 2 CH
3), 3.75
(˜t, 2
J ˜ 3
J ˜ 12.0 Hz, 2 H, OCH
2), 4.13 [d, 3
J(PH) ˜ 20.0 Hz, 1 H, OCH
2], 4.15-4.30
(˜m, 2 H, OCH
2),
6.20 and 6.41 (2 d, 2
J ˜ 1.5
Hz, CH
2=C), 7.25-7.55
(m, 5 H, 5 H, Ar-H); 13C
NMR δ 21.3, 21.5, 32.6 [d, 3J(PC) = 6.0
Hz], 47.7 [d, 1
J(PC) = 137.0 Hz, CHPh], 76.2 [d, 2
J(PC) = 20.5 Hz], 117.7
(d, J = 10.0 Hz), 118.9, 128.5,
129.0, 129.4, 129.6, 132.9 (J = 6.5
Hz), 134.8 (J = 8.0 Hz); 31P
NMR 14.6.
11 X-ray data were collected on an Enraf-Nonius-MACH3
at 293 K (3, 12b)
or Bruker AXS SMART diffractometer at 296 K(11d)
using Mo-Kα (λ = 0.71073 Å)
radiation and capillary mounting. The structures were solved by
direct methods;
[12]
all
non-hydrogen atoms were refined anisotropically. The quality of
data of 11d was only moderate but the stereochemistry
is unambiguous. Crystallographic data (excluding structure factors)
for the structures in this paper have been deposited with the Cambridge
Crystallographic Data Centre as supplementary publication numbers
CCDC 190318 - 190320. Copies of the data can be obtained,
free of charge, on application to CCDC, 12 Union Road, Cambridge,
CB2 1EZ, UK [fax: +44-1223-336033 or e-mail: deposit@ccdc.cam.ac.uk]. ORTEP
drawings of 11d and 12b are
available from the authors.
12
Sheldrick GM.
SHELX-97
University of
Göttingen;
Germany:
1997.
Other reports on the synthesis
of 2-substituted-1,3-butadienes:
13a
Nakano M.
Okamoto Y.
Synthesis
1983,
917
13b
Shen Y.
Ni J.
J. Chem. Res. Synop.
1997,
358
13c
Lee BS.
Gil JM.
Oh DY.
Tetrahedron Lett.
2001,
42:
2345
14a
Janecki T.
Synthesis
1991,
167
14b
Janecki T.
Bodalski R.
Synthesis
1989,
506