Zusammenfassung
Hintergrund und Fragestellung: In Anpassung an den Tag-Nacht-Zyklus haben Organismen endogene Mechanismen der Zeitmessung entwickelt. Die Kopplung der endogenen Tagesrhythmik an den Tag-Nacht-Zyklus ist von elementarer Bedeutung für die Regulation physiologischer Abläufe im Organismus. Wie die Ausprägung der Tagesrhythmik in der intrauterinen und extrauterinen Phase der Entwicklung durch die Umwelt beeinflusst wird, hängt von einer komplexen Verschaltung molekularer, physiologischer und sensorischer Mechanismen ab. In dieser Arbeit wird erläutert, welche Körperfunktionen beim Foetus und beim Säugling tagesrhythmisch schwanken und welchen Zeitgebereinflüssen das Kind ausgesetzt ist.
Probanden und Methodik: Bei 12 Familien wurde die motorische Aktivität zeitgleich bei Mutter, Vater und Kind unter Verwendung von Aktometern kontinuierlich in den ersten 4 Lebensmonaten gemessen. Bei den Eltern wurde mit der Aufzeichnung im 3. Trimester begonnen. Das zeitliche Verhalten wurde mittels Zeitreihenanalysen untersucht. Zusätzlich wurde die Literatur zur Ontogenese der zirkadianen Rhythmik beim Menschen recherchiert.
Ergebnisse: Im letzten Trimester wurden tagesperiodische Schwankungen physiologischer Funktionen in enger Beziehung zum mütterlichen zirkadianen Rhythmus festgestellt. Aktivitäts-Ruhe-Zyklen reifer Neugeborener weisen typische Muster auf, obwohl eine hohe inter-individuelle Variabilität besteht. Deutliche Übereinstimmung der Aktivitätsmuster von Mutter und Kind nach der Geburt, als die Aktivitätsphasen des Kindes noch nicht an den Tag-Nacht-Zyklus angepasst waren, korrelierte wenige Zeit später mit einer schnellen Entwicklung eines diurnalen Aktivitätsmusters beim Kind.
Schlussfolgerung: Kenntnisse über die periodischen Veränderungen in Physiologie und Verhalten im Verlauf der Ontogenese des Menschen stellen einen Vorteil für pharmakologische Maßnahmen und erfolgreiche Behandlungen im Krankheitsfall dar.
Abstract
Background: Organisms have developed endogenous mechanisms for keeping track of time which allow them to adjust to environmental changes. Entrainment of endogenous rhythms to the day-night cycle is of elementary importance for the regulation of physiological processes. How environmental changes influence the manifestation of cicradian rhythms during intrauterine and extraurterine growth depend on complex networking of molecular, physiological and sensory mechanisms. This work reports on development of circadian rhythms in the infant, with particular emphasis on the roles of times cues to which the infant is exposed.
Subjects and Methods: Activity data of 12 families were continously recorded during the first 4 months after birth using non-invasive actigraphs. Recordings of parental activity started at the 3rd trimester of pregnancy. Time series analysis was used to investigate the periodic structure of the data. In addition, we review the literature on the ontogenesis of circadian rhythms in humans.
Results: During the 3rd trimester, daily variation of physiological functions in the fetus showed a high degree of correspondence with maternal circadian rhythms. Early behaviour of most infants was highly variable between individuals but could be asigned to different entrainment patterns. Good correspondence of mother-infant activity patterns during the early postnatal period, when the infant was not yet entrained to the day-night-cycle, was correlated with the rapid development of an entrained daily pattern in the infant a few weeks later.
Conclusion: Understanding the emergence of periodic structures at physiological and behavioural level during human ontogenesis will be an asset in the successful intervention and treatment during neonatal care.
Schlüsselwörter
Aktographie - Tagesrhythmus - Schlaf - Säugling - Schwangerschaft - Fetus - Geburt
Key words
Actigraphy - circadian - sleep - infant - pregnancy - fetus - birth
Literatur
1 Edmunds L N. Cellular and molecular aspects of circadian oscillators: Models and mechanisms for biological timekeeping. In: Touitou Y. and Haus E. eds Biologic rhythms in clinical and laboratory medicine . Springer-Verlag Berlin, Heidelberg; 1992: pp. 35-54
2 Witting W. Aging of the circadian system: Chronobiological effects of light Academisch Proefschrift. Amsterdam; Witting 1997
3
Pickard G E.
Bifurcating axons of retinal ganglion cells terminate in the hypothalamic suprachiasmatic nucleus and the intergeniculate leaflet of the thalamus.
Neurosci Lett.
1985;
55
211-217
4
Foster R G, Provencio I, Hudson D, Fiske S, De Grip W, Menaker M.
Circadian photoreception in the retinally degenerate mouse (rd/rd).
J Comp Physiol.
1991;
169
39-50
5
Meijer J H, Watanabe K, Detari L, de Vries M J, Albus H, Treep J A, Schaap J, Rietveld W J.
Light entrainment of the mammalian biological clock.
Prog Brain Res.
1996;
111
175-190
6 Aschoff J. Response curves in circadian periodicity. In: Aschoff J, ed Circadian Clocks. North-Holland Publishing Company Amsterdam; 1965: p. 95-111
7
Löhr B, Siegmund R.
Ultradian and circadian rhythms of sleep-wake and food-intake behavior during early infancy.
Chronobiol Int.
1999;
16
129-148
8 Rosenwasser A M, Wirz-Justice A. Circadian rhythms and depression: Clinical and Experimental Models. In: Redfern PH, Lemmer B, eds Physiology and pharmacology of Biological Rhythms. Berlin, Heidelberg; Springer-Verlag 1997: p. 55-77
9
Tomioka K, Tomioka F.
Development of circadian sleep-wakefulness rhythmicity of three infants.
J interdiscipl Cycle Res.
1991;
22
71-80
10
McGraw K, Hoffmann R, Harker C, Herman J H.
The development of circadian rhythms in a human infant.
Sleep.
1999;
22
303-10
11
Wulff K, Dedek A, Siegmund R.
Circadian and ultradian time patterns in human behaviour: Part 2: Social synchronisation during the development of the infant’s diurnal activity-rest pattern.
Biological Rhythm Research.
2001;
32(5)
529-546
12
Keefe M, Kotzer A M, Froese-Fretz A, Curtin M.
A longitudinal comparison of irritable and Nonirritable infants.
Nursing.
Research;
45(1)
4-9
13
Lester B M, Hoffmann J, Brazelton T B.
The rhythmic structure of mother-infant interaction in term and preterm infants.
Child Development.
1985;
56
15-27
14
Penman R, Meares R, Baker K, Milgrom-Friedman J.
Synchrony in mother-infant interaction: A posssible neurophysiological base.
British Journal of Medical Psychology.
1983;
56
1-7
15
Nishihara K, Horiuchi S.
Changes in sleep patterns of young women from late pregnancy to postpartum: relationships to their infants’ movements.
Percept Mot Skills.
1998;
87
1043-1056
16
Beck C T.
Postpartum depressed mother’s experiences interacting with their children.
Nursing.
Research 1996;
45(2)
98-104
17
Lee K A, Zaffke M E.
Longitudinal changes in fatigue and energy during pregnancy and the postpartum period.
J Obstet Gynecol Neonatal Nurs.
1999;
28
183-191
18
Wulff K, Siegmund R.
Circadian and ultradian time patterns in human behaviour: Part 1: Acitivty monitoring of families from prepartum to postpartum.
Biological Rhythm Research.
2000;
31(5)
581-602
19
Shinkoda H, Matsumoto K, Park Y M.
Changes in sleep-wake cycle during the period from late pregnancy to puerperium identified through the wrist actigraph and sleep logs.
Psychiatry Clin Neurosci.
1999;
53
133-135
20
Suzuki S, Dennerstein L, Greenwood K M, Armstrong S M, Sano T, Satohisa E.
Melatonin and hormonal changes in disturbed sleep during late pregnancy.
J Pineal Res.
1993;
15
191-198
21
Schorr S J, Chawla A, Devidas M, Sullivan C A, Naef R W, Morrison J C.
Sleep patterns in pregnancy: a longitudinal study of polysomnography recordings during pregnancy.
J Periantol.
1998;
18
427-430
22
Brunner D P, Munch M, Biedermann K, Huch R, Huch A, Borbely A A.
Changes in sleep and sleep electroencephalogram during pregnancy.
Sleep.
1994;
17
576-582
23
Horiuchi S, Nishihara K.
Analyses of mothers’ sleep logs in postpartum periods.
Psychiatry Clin Neurosci.
1999;
53
137-139
24
Siegmund R, Tittel M, Schiefenhövel W.
Time Patterns in Parent-Child Interactions in a Trobriand Village (Papua New Guinea).
Biological Rhythm Research.
1994;
25
241-251
25
Shimada M, Takahashi K, Segawa M, Higurashi M, Samejim M, Horiuchi K.
Emerging and entraining patterns of the sleep-wake rhythm in preterm and term infants.
Brain Dev.
1999;
21
468-473
26 Wulff K, Siegmund R. Time pattern analysis of activity-rest rhythms in families with infants using actigraphy. In: Salzarulo P, Ficca G, eds Awakening and sleep-wake cycle across development. Amsterdam & Philadelphia; John Benjamins 2001; im Druck
27
Korte J, Wulff K, Oppe C, Siegmund R.
Ultradian and circadian activity-rest rhythms of preterm neonates compared to full-term neonates using actigraphic monitoring.
Chronobiol Int.
2001;
18(4)
697-708
28
Hellbrügge T.
Entwicklung der Tag-Nacht-Periodik im Kindesalter.
Wiss Z Humboldt-Univ Berlin.
1965;
XIV
263-275
29
Mirmiran M, Kok J H.
Circadian rhythms in early human development.
Early Hum Dev.
1991;
26
121-128
30
Glotzbach S F, Edgar D M, Boeddiker M, Ariagno R L.
Biological rhythmicity in normal infants during the first 3 months of life.
Pediatrics.
1994;
94
482-488
31
Weinert D, Sitka U, Minors D S, Waterhouse J M.
The development of circadian rhythmicity in neonates.
Early Hum Dev.
1994;
36
117-26
32
Glotzbach S F, Edgar D M, Ariagno R L.
Biological rhythmicity in preterm infants prior to discharge from neonatal intensive care.
Pediatrics.
1995;
95
231-237
33 Rensing L. Genetics and molecular biology of circadian clocks. In: Redfern PH, Lemmer B, eds Physiology and Pharmacology of Biological Rhythms. Berlin, Heidelberg; Springer-Verlag 1997: p. 55-77
34
Swaab D F, Hofman M A, Honnebier M B.
Development of vasopressin neurons in the human suprachiasmatic nucleus in relation to birth.
Brain Res Dev Brain Res.
1990;
52
289-293
35
Reppert S M, Weaver D R, Rivkees S A, Stopa E G.
Putative melatonin receptors in a human biological clock.
Science.
1988;
242
78-81
36
Visser G H, Goodman J D, Levine D H, Dawes G S.
Diurnal and other cyclic variations in human fetal heart rate near term.
Am J Obstet Gynecol.
1982;
142
535-44
37
Mirmiran M, Lunshof S.
Perinatal development of human circadian rhythms.
Prog Brain Res.
1996;
111
217-26
38
Morokuma S, Horimoto N, Nakano H.
Diurnal changes in the power spectral characteristics of eye movements and heart rate variability in the human fetus at term.
Early Hum Dev.
2001;
64
27-36
39
Lunshof S, Boer K, Wolf H, van Hoffen G, Bayram N, Mirmiran M.
Fetal and maternal diurnal rhythms during the third trimester of normal pregnancy: outcomes of computerized analysis of continuous twenty-four-hour fetal heart rate recordings.
Am J Obstet Gynecol.
1998;
178
247-54
40
Reppert S M, Schwartz W J.
Maternal coordination of the fetal biological clock in utero.
Science.
1983;
220
969-971
41
Naitoh N, Watanabe Y, Matsumura K, Murai I, Kobayashi K, Imai-Matsumura K, Ohtuka H, Takagi K, Miyake Y, Satoh K, Watanabe Y.
Alteration by maternal pinealectomy of fetal and neonatal melatonin and dopamin D1 receptor binding in the suprachiasmatic nuclei.
Biochem Biophys Res Commun.
1998;
253
850-854
42 Distel H, Hudson R. Ontogenese der zirkadianen Rhythmik. In: Zulley J, Haen E, Lund R, Roenneberg T, eds Chronomedizin . Regensburg; Roderer Verlag 1994: p. 147-156
43
Fleming A S, O’Day D H, Kraemer G W.
Neurobiology of mother-infant interactions: Experience and central nervous system plasticity across development and generations.
Neurosci Biobehav Rev.
1999;
23
673-685
44
Kiväla A, Kauppila A, Leppaluoto J, Vakkuri O.
Melatonin in infants and mothers at delivery and in infants during the first week of life.
Clin Endocrinol.
1990;
32
593-8
45
Sivan Y, Laudon M, Tauman R, Zisapel N.
Melatonin production in healthy infants: Evidence for seasonal variations.
Pediatric Research.
2001;
49(1)
63-68
46
Kennaway D J, Stamp G E, Goble F C.
Development of melatonin production in infants and the impact of prematurity.
J Clin Endocrinol Metab.
1992;
75
367-369
47
Edgar D M, Dement W C, Fuller C A.
Effect of SCN lesions on sleep in squirrel monkeys: evidence for opponent process in sleep-wake regulation.
J Neurosci.
1993;
13(3)
1065-1079
48
Lodemore M J, Petersen S A, Wailoo M P.
Factors affecting the development of night time temperature rhythms.
Archives of Disease in Childhood.
1992;
67
1259-1261
49
Siegmund R.
Kultur und biologische Rhythmen: Zur Chronobiologie ausgewählter frühkindlicher Verhaltensweisen. Wiss Z der Humboldt-Univ Berlin, R.
Medizin.
1992;
41
81-85
50
Pinilla T, Birch L L.
Help me make it through the night: Behavioural entrainment of breast-fed infants’ sleep patterns.
Pediatrics.
1993;
91
436-444
51 Oppe C. Das Aktivitäts-Ruhe- und Nahrungsaufnahmeverhalten des Neugeborenen im Vergleich zur Tagesrhythmik von Erwachsenen. Diplomarbeit, Universitätsklinikum Charité, Medizinische Fakultät der Humboldt-Universität zu Berlin, Studiengang Medizinpädagogik/Pflegepädagogik. 2000
52 Gesell A. Säugling und Kleinkind in der Kultur der Gegenwart. Bad Nauheim; Christian 1965
53 Schleidt M. Kindheit aus humanethologischer Sicht. In: Forster J, Krebs U, eds Kindheit zwischen Pharao und Internet. Verlag Julius Klinkhardt: Bad Heilbrunn/OBB; 2001: p. 87-108
54 Hassenstein B. Verhaltensbiologie des Kindes. Heidelberg, Berlin; Spektrum Akademischer Verlag GmbH 5. überarb. und erw. Aufl 2001
55 Eibl-Eibesfeldt I. Die Biologie des menschlichen Verhaltens. München, Zürich; Piper 1995
56 Grossmann K, Grossmann K. Bindung, Exploration und internale Arbeitsmodelle - der Stand der Forschung. In: Parfy E, Redtenbacher H, Sigmund R, Schoberberger R, Butschek Ch, eds Bindung und Interaktion, Dimensionen der professionellen Bindungsgestaltung. Wien; Facultas Universitätsverlag 2000
Dr. Katharina Wulff
Institut für Medizinische Anthropologie
Charité, Campus Mitte
Luisenstraße 57
10117 Berlin
Email: katharina.wulff@charite.de
Email: renate.siegmund@charite.de