Subscribe to RSS
DOI: 10.1055/s-2002-35561
Co2(CO)8 Catalyzed Pauson-Khand Reaction under Microwave Irradiation [1]
Publication History
Publication Date:
20 November 2002 (online)
Abstract
Microwave irradiation is used to accelerate Pauson-Khand reactions. The conditions for the Pauson-Khand reaction, catalytic in Co2(CO)8 under microwave irradiation, were optimized. It is possible to obtain various types of [2+2+1] cycloaddition products in 5 minutes without additional carbon monoxide.
Key words
microwave - Pauson-Khand reaction - catalysis - cobalt - cycloaddition
- 1 Transition metal catalyzed reactions
in organic synthesis, part 2. For part 1, see:
Jung M.Groth U. Synlett 2002, 12: 2015 -
2a
Khand IU.Knox GR.Pauson PL.Watts WE. J. Chem. Soc., Chem. Commun. 1971, 36 -
2b
Khand IU.Knox GR.Pauson PL.Watts WE. J. Chem. Soc., Perkin Trans. 1 1973, 975 -
2c
Khand IU.Knox GR.Pauson PL.Watts WE. J. Chem. Soc., Perkin Trans. 1 1973, 977 - For reviews, see:
-
3a
Pauson PL. Tetrahedron 1985, 41: 5855 -
3b
Schore NE. Chem. Rev. 1988, 88: 1081 -
3c
Geis O.Schmalz HG. Angew. Chem. Int. Ed. 1998, 37: 911 -
3d
Chung YK. Coord. Chem. Rev. 1999, 188: 297 -
3e
Brummond KM.Kent JL. Tetrahedron 2000, 56: 3263 -
3f
Buchwald SL.Hicks FA. In Comprehensive Asymmetric Catalysis Vol. II:Jacobsen EN.Pfaltz A.Yamamoto H. Springer-Verlag; Berlin, Heidelberg: 2000. Chap. 15. p.1-20 -
4a
Jamison TF.Shambayati S.Crowe WE.Schreiber SL. J. Am. Chem. Soc. 1997, 119: 4353 -
4b
Kerr WJ.McLaughlin M.Pauson PL.Robertson SM. J. Organomet. Chem. 2001, 630: 104 -
4c
Murray A.Hansen JB.Christensen BV. Tetrahedron 2001, 57: 7383 -
4d
Velcicky J.Lex J.Schmalz H.-G. Org. Lett. 2002, 4: 565 -
5a
See ref. 2c.
-
5b
Jeong N.Hwang SH.Lee Y.Chung YK. J. Am. Chem. Soc. 1994, 116: 3159 -
5c
Pagenkopf BL.Livinghouse T. J. Am. Chem. Soc. 1996, 118: 2285 -
5d
Jeong N.Hwang SH.Lee YW.Lim JS. J. Am. Chem. Soc. 1997, 119: 10549 -
5e
Sugihara T.Yamada M.Ban H.Yamaguchi M.Kaneko C. Angew. Chem., Int. Ed. Engl. 1997, 36: 2801 -
5f
Sugihara T.Yamaguchi M. J. Am. Chem. Soc. 1998, 120: 10782 -
5g
Kim JW.Chung YK. Synthesis 1998, 142 -
5h
Belanger DB.O’Mahony DJR.Livinghouse T. Tetrahedron Lett. 1998, 39: 7637 -
5i
Krafft ME.Bonaga LVR.Hirosawa C. Tetrahedron Lett. 1999, 40: 9171 -
5j
Krafft ME.Bonaga LVR.Hirosawa C. Tetrahedron Lett. 1999, 40: 9177 -
5k
Krafft ME.Bonaga LVR. Synlett 2000, 959 -
5l
Krafft ME.Bonaga LVR. Angew. Chem. Int. Ed. 2000, 39: 3676 -
5m
Sughihara T.Yamaguchi MN.Nishizawa M. Chem.-Eur. J. 2001, 7: 1589 - 6
Gedye RN.Smith F.Westawya K.Ali H.Baldisera L.Laberge L.Rousell J. Tetrahedron Lett. 1986, 27: 279 - For reviews, see:
-
7a
Gabriel C.Gabriel S.Grant HG.Halstead BSJ.Mingos DMB. Chem. Soc. Rev. 1998, 27: 213 -
7b
Perreux L.Loupy A. Tetrahedron 2001, 57: 9199 -
7c
Lidström P.Wathey B.Westman J. Tetrahedron 2001, 57: 9225 -
7d
Kuhnert N. Angew. Chem. Int. Ed. 2002, 42: 1863 -
7e
Larhed M.Moberg C.Hallberg A. Acc. Chem. Res. 2002, 35: 717 - See ref. 5e. For reactivity of Co2(CO)6-alkyne complexes, see:
-
8a
Nicholas KM. Acc. Chem. Res. 1987, 20: 207 -
8b
Melikyan GG.Nicholas KM. In Modern Acetylene ChemistryStang PJ.Diederich F. Wiley VCH; Weinheim: 1995. Chap. 4. p.99-138 -
8c
Fischer S. Synlett 2002, 1558 - 10 All experiments were preformed using
a Smith Synthesizer from Personal Chemistry. For a detailed instrument description,
see:
Stadler A.Kappe CO. Comb. Chem. 2001, 3: 624 - 11 Deposition of a metal film has recently
also been observed in a Pd(OAc)2 catalyzed C-P
cross-coupling reaction:
Stadler A.Kappe CO. Org. Lett. 2002, 4: 3541 - All spectral data were in full accordance with those reported in literature:
-
14a Entry 1:
Devasagayaraj A.Periasamy M. Tetrahedron Lett. 1989, 30: 595 -
14b Entry 3:
Hayakawa K.Schmid H. Helv. Chim. Acta 1977, 60: 2160 -
14c Entry 4:
Grossman RB.Buchwald SL. J. Org. Chem. 1992, 57: 5803 -
14d
Entry 2: 1H (CDCl3, 400 MHz): δ = 7.00 (d, J = 2.4 Hz, 1 H), 2.54 (sept., J = 6.6 Hz, 1 H), 2.48 (m, 1 H), 2.30 (m, 1 H), 2.08 (m, 2 H), 1.58 (m, 1 H), 1.51 (m, 1 H), 1.21 (m, 2 H), 1.01 (d, J = 6.6 Hz, 6 H), 0.86 (m, 2 H). 13C (CDCl3, 100 MHz): δ = 210.7, 156.5, 155.4, 54.1, 47.7, 38.9, 37.9, 30.8, 29.0, 28.3, 24.5, 21.5, 21.2.
References
It should be stated that low boiling solvents usually cannot be heated to 200 °C but in our case the desired temperature could be reached in all cases except dichloromethane, which reached a maximum at 140 °C.
12When conventional heating of the sealed vessel was provided under identical conditions the yield did not exceed 40% even after 4 h.
13
Typical Experimental
Procedure: To a 10 mL glass vial 942 mg (10 mmol, 5 equiv)
norbornene 1 and 137 mg (0.4 mmol, 0.2
equiv) Co2(CO)8 were added under an inert
gas atmosphere in a glove box and sealed with a Teflon septum and
an aluminum crimp top. After the addition of 2 mL toluene (freshly
distilled from sodium), 220 µL (2 mmol) phenylacetylene 2 and finally 275 µL (2.4 mmol,
1.2 equiv) cyclohexylamine were added through the Teflon septum. The
vessel was then heated to 100 °C under microwave irradiation
using the Smith Synthesizer (monomode microwave cavity at 2.45 GHz;
temperature control by automated adjustment of irradiation power
in a range from
0 to 300 W). After 300 s the vial was cooled
to r.t. by gas jet cooling. The reaction mixture was then subjected
to a typical aqueous workup. The dried organic phase was then liberated from
solvent and purified by flash chromatography on silica eluting with
EtOAc/petroleum ether to give 363 mg (1.62 mmol, 81%)
of exo-3.