References
1 For the previous paper in this series,
see: Sotelo E.
Fraiz N.
Yañez M.
Terrades V.
Laguna R.
Cano E.
Raviña E.
Bioorg. Med. Chem.
2002,
10:
2873
2
Frank H.
Heinisch G.
Pharmacologically
Active Pyridazines, In Progress in Medicinal
Chemistry
27:
Ellis GP.
West GB.
Elsevier;
Amsterdam:
1990.
p.1-49
3
Raviña E.
García-Mera G.
Santana L.
Orallo F.
Calleja JM.
Eur.
J. Med. Chem.
1985,
20:
475
4
Raviña E.
Terán C.
Dominguez N.
Masaguer CF.
Arch. Pharm. (Weinheim)
1991,
324:
455
5
Gil Longo J.
Laguna R.
Verde I.
Castro M.
Orallo F.
Fontenla J.
Calleja JM.
Raviña E.
Terán C.
J.
Pharm. Sci.
1993,
82:
286
6
Laguna R.
Montero A.
Cano E.
Raviña E.
Sotelo E.
Estévez I.
Acta Pharmaceutica Hungarica
1996,
66:
S43 ; Chem. Abstr. 1997, 126, 165993
7
Laguna R.
Rodriguez-Liñares B.
Cano E.
Estévez I.
Raviña E.
Sotelo E.
Chem. Pharm.
Bull.
1997,
45:
1151
8
Montero-Lastres A.
Fraiz N.
Cano E.
Laguna R.
Estévez I.
Raviña E.
Biol. Pharm. Bull.
1999,
22:
1376
9
Sotelo E.
Fraiz N.
Yañez M.
Laguna R.
Cano E.
Brea J.
Raviña E.
Bioorg.
Med. Chem. Lett.
2002,
10:
1575
10
Estévez I.
Coelho A.
Raviña E.
Synthesis
1999,
1666
11
Coelho A.
Sotelo E.
Estévez I.
Raviña E.
Synthesis
2001,
871
12
Sotelo E.
Raviña E.
Synlett
2002,
223
13a
Zára-Kaczián E.
Mátyus P.
Heterocycles
1993,
36:
519
13b
Haider N.
Heinisch G.
J. Chem. Soc., Perkin Trans.
1
1988,
401
13c
Haider N.
Geinisch G.
Heterocycles
1989,
29:
1309
14
Greene T.
Wuts GPM.
Protective Groups in Organic Synthesis
3rd
ed.:
Wiley;
New York:
1999.
p.632
15
Sotelo E.
Coelho A.
Raviña E.
Tetrahedron
Lett.
2001,
42:
8633
16
Representative
Procedure for Preparation of Compound 2. A mixture of 1 (2.64 g, 0.105 mmol) and 35% formaldehyde
(0.828 mL, 0.105 mmol) was flushed with argon for 5 min. The suspension
was stirred and heated under reflux (oil bath 110 °C) under
argon until the starting material had disappeared (24 h). The mixture
was cooled and the suspension was concentrated to dryness under
reduced pressure. The obtained solid was purified by column chromatography
on silica gel (EtOAc-hexanes, 1:2). Physical and spectral
data for compound 2: Yield: 89%,
mp 237-238 °C. IR (KBr): 3100-3000, 1642
cm-1. 1H NMR (CDCl3,
300 MHz): δ = 7.55-7.40 (m, 5 H, Ph),
5.58 (d,
J = 8.1
Hz, 2 H, CH2), 4.74 (t, J = 8.1
Hz, 1 H, OH).
13C NMR (CDCl3,
300 MHz): δ = 159.6, 147.0, 134.9, 133.4, 131.7,
130.0, 129.6, 128.6, 77.1. HRMS (Autospec Micromass): m/z calcd
for C11H9 BrN2O2 (M+):
279.9847. Found: 279.9859.
17
Ripoll J.
Vallé Y.
Synthesis
1993,
3:
659
18
Representative
Procedure for Suzuki Arylations on Compound 2. A mixture of 2 (0.45 g, 1.6 mmol), arylboronic acid
(1.6 mmol), Pd(PPh3)4 (0.036 g, 0.032 mmol)
and Na2CO3 (0.67 g, 6.4 mmol) in 18 mL of
3:1 DME-H2O was flushed with argon for 5 min.
The mixture was stirred and heated under reflux (oil bath 120 °C)
under argon until the starting material had disappeared. The mixture
was cooled and the solution was concentrated to dryness under reduced
pressure. The residue was purified by column chromatography on silica
gel.
19
Representative
Procedure for Sonogashira Couplings on Compound 2. A mixture
of 2 (0.28 g, 1.0 mmol), acetylene derivative
(1.5 mmol), Pd(PPh3)2Cl2 (0.03
g, 0.01 mmol), CuI (0.01 g, 0.01 mmol) and anhyd triethylamine (0.282
mL, 2.0 mmol) in 10 mL of DMF was flushed with argon for
5
min. The reaction mixture was stirred and heated (oil bath 55 °C)
under argon until the starting material had dis-appeared. The reaction
mixture was cooled and the solution was concentrated to dryness
under reduced pressure. The residue was purified by column chromatography
on silica gel.
20
Selected Physical
and Spectral Data for Representative Compounds 3. 3a: Yield:
90%. IR (KBr): 3100-2923, 1668, 1589 cm-1. 1H
NMR (CDCl3, 300 MHz): δ = 11.58 (br
s, 1 H, NH), 7.38-7.20 (m, 10 H, phenyl), 7.01 (s, 1 H,
H4). 3b: Yield: 78%.,
IR (KBr): 3500-2924, 1642 cm-1. 1H
NMR (CDCl3, 300 MHz): δ = 11.40 (br
s, 1 H, NH), 7.41-7.29 (m, 5 H, phenyl), 7.18 (d, J = 8.0 Hz,
2 H, phenyl), 7.06 (d, J = 8.0
Hz, 2 H, phenyl), 7.01 (s, 1 H, H4), 2.33 (s, 3 H, CH3). 3c: Yield: 78%. IR (KBr): 3500-2924,
1642 cm-1. 1H NMR (CDCl3,
300 MHz): δ = 11.65 (br s, 1 H, NH), 7.40-7.30
(m, 5 H, Arom), 7.16 (d, J = 8.4
Hz, 2 H, Arom), 7.05 (d, J = 8.4
Hz, Arom), 6.97 (s, 1 H, H4). 3e:
Yield: 70%. IR (KBr): δ = 3000-3100,
2136, 1654 cm-1. 1H
NMR (CDCl3, 300 MHz): δ = 12.46 (br
s, 1 H), 7.73 (m, 2 H, Arom), 7.42 (m, 3 H, Arom), 7.13 (s, 1 H),
0.16 (s, 9 H, 3 × CH3). 3f: Yield: 86%. IR (KBr): 3100,
1680 cm-1. 1H NMR
(MeOD, 300 MHz): δ = 13.18 (br s, 1 H, NH), 7.75
(m, 2 H, Arom), 7.47 (m, 3 H, Arom), 7.16 (s, 1 H, H4),
4.35 (s, 2 H, CH2), 3.34 (t, 1 H, J = 1.6
Hz, OH). 3g: Yield: 81%. IR (KBr): 3246-2885,
2236, 1667, 1053 cm-1. 1H
NMR (MeOD, 300 MHz): δ = 12.40 (br s, 1 H, NH),
7.70-7.64 (m, 2 H, Arom), 7.42-7.37 (m, 3 H,
Arom), 7.17 (s, 1 H, H4), 5.35 (s, 1 H, CH), 3.52 (m,
4 H, 2 × OCH2), 1.15 (m, 6
H, 2 × CH3). 3h: Yield:
86%. IR (KBr): 1669, 1092 cm-1. 1H
NMR (CDCl3, 300 MHz): δ = 12.68 (br
s, 1 H, NH), 7.43 (m, 5 H, Arom), 7.11 (s, 1 H, H4),
6.45 (dd, 1 H, J = 10.9,
17.2 Hz, CH=CH2), 5.87 (d, 1 H, J = 17.2
Hz, CH=CH2), 5.50 (d, 1 H, J = 10.9
Hz, CH=CH2).