References
1a
Früchtel JS.
Jung G.
Angew. Chem., Int. Ed. Engl.
1996,
35:
17
1b
Balkenhohl F.
von dem Busche-Hünnefeld C.
Lansky A.
Zechel C.
Angew. Chem.,
Int. Ed. Engl.
1996,
35:
2288
1c
Gulliver F.
Orain D.
Bradley M.
Chem.
Rev.
2000,
100:
2091
1d
Comely AC.
Gibson SE.
Angew.
Chem. Int. Ed.
2001,
40:
988
2
Pátek M.
Lebl M.
Biopolymers
1998,
47:
353
3a
Kenner GW.
McDermott JR.
Sheppard RC.
J. Chem.
Soc., Chem. Commun.
1971,
636
3b
Backes BJ.
Virgilio AA.
Ellman JA.
J. Am. Chem. Soc.
1996,
118:
3055 ; and literature cited therein
3c
Yang L.
Moriello G.
Tetrahedron Lett.
1999,
40:
8197
4
Maclean D.
Hale R.
Chen M.
Org.
Lett.
2001,
3:
2977
5a
Flanigan E.
Marshall DL.
Tetrahedron
Lett.
1970,
2403
5b
Marshall DL.
Liener IE.
J.
Org. Chem.
1970,
35:
867 ;
and literature cited therein
5c
Gayo LM.
Suto MJ.
Tetrahedron
Lett.
1997,
38:
211 ;
and literature cited therein
6a
Pátek M.
Lebl M.
Tetrahedron
Lett.
1991,
32:
3891
6b
Brik A.
Keinan E.
Dawson PE.
J.
Org. Chem.
2000,
65:
3829
7
Nicolaou KC.
Wissinger N.
Hughes R.
Smethurst C.
Cho SY.
Angew.
Chem. Int. Ed.
2000,
39:
1084
8
Greene TW.
Wuts PGM.
Protective
Groups in Organic Synthesis
3rd ed.:
Wiley;
New
York:
1999.
9
Magnus P.
Ladlow M.
Elliott J.
Kim CS.
J. Chem. Soc., Chem.
Commun.
1989,
518
10a
Fukase Y.
Fukase K.
Kusumoto S.
Tetrahedron Lett.
1999,
40:
1169
10b
Fukase Y.
Fukase K.
Kusumoto S. In
Peptide Science
Fuji N.
The Japanese Peptide Society;
Japan:
1999.
11 Kusumoto S, and Fukase K. inventors; Jpn. Kokai Tokkyo Koho JP
2000 186,050.
; Chem. Abstr. 2000, 133, 58364
12 Kusumoto S, and Fukase K. inventors; Jpn. Kokai Tokkyo Koho JP
2000 186,049.
; Chem. Abstr. 2000, 133, 58365
In the past a number of other cleavage
protocols have been developed and examined in orthogonal protecting
group strategies:
13a H2/Pd: Cranddall JK.
Keyton DJ.
Kohne J.
J. Org. Chem.
1968,
33:
3655
13b See also: Southard GL.
Zaborowsky BR.
Pettee JM.
J. Am. Chem. Soc.
1971,
93:
3302
13c Pd(II), Bu3SnH: Zhang HX.
Guibé F.
Balavoine G.
Tetrahedron Lett.
1988,
29:
619
13d See further: Zhang HX.
Guibé F.
Balavoine G.
Tetrahedron Lett.
1988,
29:
623
13e Co2(CO)8,
DMSO: Alcaide B.
Pérez-Castells J.
Sánchez-Vigo B.
Sierra MA.
J. Chem. Soc., Chem.
Commun.
1994,
587
13f [MoS4]2- and ultrasound
in the case of the deprotection of amines: Sinha S.
Ilankumaran P.
Chandrasekaran S.
Tetrahedron
Lett.
1999,
40:
771
13g See also: Ilankumaran P.
Manoj N.
Chandrasekaran S.
Chem. Commun.
1996,
1957
13h Low valent titanium: Rele S.
Talukdar S.
Banerji A.
Tetrahedron Lett.
1999,
40:
767
13i Kariyone K, and Yazawa T. inventors; Japan.
Kokai JP 49011202. SeO2:
; Chem. Abstr. 1974, 81, 120227
14a
Ziegler FE.
Tung JS.
J. Org. Chem.
1991,
56:
6530
14b
Crisp GT.
Gore J.
Tetrahedron
1997,
53:
1505
15
Nagaoka H.
Kishi Y.
Tetrahedron
1981,
37:
3873
16 Analogous preparation to the oxidation
of Wang resin is described by: Yan B.
Sun Q.
Wareing JR.
Jewell CF.
J. Org. Chem.
1996,
61:
8765
17
Frechet JM.
Schuerch C.
J. Am. Chem. Soc.
1971,
93:
492
18 All resins prepared have been characterized
by IR spectro-
scopy and by elemental analysis before and
after immobili-zation [resin 1:
nitrogen analysis (route A), bromine and nitrogen analysis (route
B); resin 2: chlorine and nitrogen analysis] as
well as Fmoc-calibration for resin 1.
The structures of all non-polymeric
compounds have been characterized by NMR, IR and elemental analysis
or HRMS. The synthesis of compound 12 was
carried out as follows:
19a PPh3 (6
equiv), CCl4 (3 equiv), -20 °C,
25 min to 0 °C, 16 h, CH2Cl2,
92%;
19b
n-BuLi
(1.6 M solution in hexane, 2 equiv), -78 °C,
5 h, THF, 71%;
19c
n-BuLi
(1.6 M solution in hexane, 1.1 equiv), -78 °C
to r.t., 19.5 h, THF, 74%;
19d DIBALH (1 M in Toluol,
2 equiv), -78 °C to r.t., 16 h, quant.
Compound 12: 1H NMR (200 MHz,
CDCl3): δ [ppm] = 7.43-7.29
(m, 7 H, C-Harom.), 6.92-6.87 (m, 2
H, C-Harom.), 5.04 (s, 2 H, O-CH2),
4.46 (s, 2 H, CH2-OH), 1.78 (br s, 1 H, CH2-OH). 13C
NMR (50.3 MHz, CDCl3): δ [ppm] = 158.97
(O-Carom.), 136.56 (CH2-Carom.),
133.22, 128.66, 128.14, 127.50, 114.89 (Carom.), 86.00
(CºC), 85.64 (CºC), 70.05 (CH2-OBn),
51.73 (CH2-OH); one quaternary signal of the
aromatic region is overlapped by the adjacent tertiary signal. Elemental
analysis: C16H14O2 (238.27 g/mol)
calcd: C, 80.65; H, 5.92. Found: C, 80.58; H, 6.05. MS (FD): m/z = 238.5 (100.00),
239.5 (16.15), 240.6 (1.60).
20 Although the solution-phase reaction
conditions were not directly applicable to the solid support, the
combined procedures proved to be advantageous during characterization
of the resins by IR-spectroscopy: Grice P.
Leuch AG.
Ley SV.
Massi A.
Mynett DM.
J.
Comb. Chem.
2000,
2:
491
21
Chan KS.
Yeung ML.
Chan W.
Wang R.-J.
Mak TCW.
J.
Org. Chem.
1995,
60:
1741
22
Wadsworth DH.
Geer SM.
Detty MR.
J.
Org. Chem.
1987,
52:
3662
23a
Debono M.
Turner WW.
LaGrandeur L.
Burkhardt FJ.
Nissen JS.
Nichols KK.
Rodriguez MJ.
Zweifel MJ.
Zeckner DJ.
Gordee RS.
Tang J.
Parr TR.
J. Med.
Chem.
1995,
38:
3271
23b
Crisp GT.
Turner PD.
Stephens KA.
J. Organomet. Chem.
1998,
570:
219
For example:
24a
Thorand S.
Krause N.
J. Org. Chem.
1998,
63:
8551
24b
Glase SA.
Akunne HC.
Heffner TG.
Jaen JC.
MacKenzie RG.
Meltzer LT.
Pugsley TA.
Smith SJ.
Wiese LD.
J.
Med. Chem.
1996,
39:
3179
25 The in situ deprotection protocol
of Y. Fukase, K. Fukase, S. Kusumoto,
[10]
when
applied to propargyloxycarbonyl-protected phenylalanine methylester
on 1.5 mmol scale, resulted in a product mixture and unsatisfactory
product purity.
26
Nicholas KM.
Acc.
Chem. Res.
1987,
20:
207