Subscribe to RSS
DOI: 10.1055/s-2002-36002
Aberrante Konnektivität im humanen epileptischen Hippokampus
Aberrant Connectivity in Human Epileptic Hippocampus Unterstützt durch die Deutsche Forschungsgemeinschaft Transregio-SFB TR3 und GRK Nr. 238/2-99 Anmerkung: Dieser Beitrag sollte ursprünglich im Schwerpunktheft „Untersuchungen an lebendem menschlichen Hirngewebe” (Heft 3/2002) erscheinen. Aus drucktechnischen Gründen hat ihn der Verlag auf dieses Heft verschoben.Publication History
Publication Date:
09 December 2002 (online)
Zusammenfassung
Einleitung: Neuronale Netzwerkreorganisationen können zur Epileptogenese der humanen limbischen Epilepsie beitragen. Neben dem aberranten Sprossen von Moosfasern ist dabei eine ausgedehntere Ausprägung von aberranten Faserverbindungen in der Hippokampusformation vorstellbar. Wir untersuchten daher Sprossungsphänomene in der CA1-Region, da dieses Segment in der Temporallappenepilepsie des Menschen am meisten geschädigt ist. Methodik: Akute Hirnschnitte von operativ entfernten Hippokampi (n = 54) von Patienten mit einer pharmakoresistenten Temporallappenepilepsie oder läsionsassoziierten temporomesialen Erkrankungen wurden mit dextranaminkonjugierten Fluoreszenzfarbstoffen markiert und die Faserverbindungen des Hippokampus in transversaler Ebene untersucht. Zur Beurteilung des Moosfasersystems diente zusätzlich die Timm-Färbung. Ergebnisse: Der Nervenzellverlust der resezierten Hippokampi wurde nach dem Wyler-Grading eingeteilt in Non-AHS (keine Ammonshornsklerose), moderate AHS und schwere AHS. Im Gyrus dentatus fand sich in allen Formen der AHS ein unterschiedlich intensives aberrantes Sprossen von Moosfasern, nachweisbar durch fluoreszenzmarkierte Fasern und eine Zinkausfällung in der Molekularschicht des Gyrus dentatus. In der CA1-Region kam es insbesondere in der moderaten Form der AHS zu einer erhöhten Konnektivität zwischen den Projektionsneuronen, während in den Abschnitten vollständigen Zellverlusts Faserverbindungen ungenügend dargestellt waren. In der CA1-Region von Non-AHS-Gewebe fand sich keine aberrante neuronale Verschaltung zwischen den Pyramidenzellen. Schlussfolgerungen: Der Umbau des neuronalen Netzwerkes in der CA1-Region und im Gyrus dentatus weist auf eine weitergehende axonale Reorganisation in den Hauptbereichen der chronisch epileptischen temporomesialen Region hin. Die strukturellen Veränderungen können zu einer Verstärkung von Feedback-Schleifen innerhalb des Hippokampus führen mit der Konsequenz, dass synchrone pathologische Entladungen im Hippokampus befördert werden.
Abstract
Introduction: Remodeling of the neuronal network is one factor for epileptogenesis in human temporal lobe epilepsy. Aberrant sprouting of mossy fibres is a well accepted phenomenon; however, a more widespread rearrangement of fibres in the hippocampal formation is conceivable. We studied whether sprouting occurs in area CA1, as this segment is badly damaged in mesiotemporal sclerosis. Materials and methods: Acute brain slices of hippocampi removed from patients with intractable epilepsy or temporal lesions were labelled with fluorescent dextran-amines. The connectivity of neurons was traced in transverse plains of the hippocampus. Timm staining for zinc in mossy fibres was additionally employed. Results: The nerve cell loss was graded into non-AHS (Ammon's Horn sclerosis), moderate and severe AHS according to the system proposed by Wyler. In the dentate gyrus, mossy fibre sprouting was found in all forms of AHS with varying intensity by showing zinc accumulation and fluorescence labelled mossy fibres in the molecular layer of the dentate gyrus. In area CA1 an increased connectivity between pyramidal cells was found particularly in the moderate form of AHS. In severe cell loss no fibres were present. In non-AHS tissue no increased CA1-CA1 connectivity was found. Conclusions: The rearrangement of the neuronal network in area CA1 and in the dentate gyrus indicates a more widespread axonal reorganisation in the main areas of the chronic epileptic hippocampus. The structural alterations might cause an enhancement of the feed-back loops within the hippocampus with the consequence, that synchronised pathological discharges might be promoted.
Key words
Neuronal connectivity - human temporal lobe epilepsy - hippocampus - dentate gyrus - dextran-amine
Literatur
- 1 Bratz D. Ammonshornbefunde bei Epileptischen. Archiv f Psychiatrie. 1899; 31 820-836
- 2 Sommer W. Erkrankung des Ammonshorns als aetiologisches Moment der Epilepsie. Archiv f Psychiatrie. 1880; X, 3. Heft 631-675
- 3 Margerison J H, Corsellis J AN. Epilepsy and the temporal lobes. Brain. 1966; 89 499-530
- 4 Houser C R. Morphological changes in the dentate gyrus in human temporal lobe epilepsy. Epilepsy Res Suppl. 1992; 7 223-234
- 5 Laurberg S, Zimmer J. Lesion induced sprouting of hippocampal mossy fiber collaterals to the fascia dentata in developing and adult rats. J Comp Neurol. 1981; 200 433-459
- 6 Babb T L, Kupfer W R, Pretorius J K. Recurrent excitatory circuits by „sprouted” mossy fibers into the fascia dentata of human hippocampal epilepsy. Epilepsia. 1988; 29 674
- 7 de Lanerolle N C, Kim J H, Robbins R C, Spencer D D. Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Research. 1989; 495 387-395
- 8 Sutula T, Cascino G, Cavazos J, Parada I, Ramirez L. Mossy fiber synaptic reorganization in the human temporal lobe. Ann Neurol. 1989; 26 321-330
- 9 Mikkonen M, Soininen H, Kalvianen R, Tapiola T, Ylinen A, Vapalahti M. et al . Remodeling of neuronal circuitries in human temporal lobe epilepsy: increased expression of highly polysialylated neural cell adhesion molecule in the hippocampus and the entorhinal cortex. Ann Neurol. 1998; 44 923-934
- 10 Blumcke I, Beck H, Lie A A, Wiestler O D. Molecular neuropathology of human mesial temporal lobe epilepsy. Epilepsy Res. 1999; 36 205-223
- 11 Turski W A, Cavalheiro E A, Schwarz M, Czuczwar S J, Kleinrok Z, Turski L. Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav Brain Res. 1983; 9 315-335
- 12 Nadler J V, Perry B W, Cotman C W. Selective reinnervation of hippocampal area CA1 and the fascia dentata after destruction of CA3 - CA4 afferents with kainic acid. Brain Res. 1980; 182 1-9
- 13 Nissinen J, Halonen T, Koivisto E, Pitkanen A. A new model of chronic temporal lobe epilepsy induced by electrical stimulation of the amygdala in rat. Epilepsy Res. 2000; 38 177-205
- 14 Mello L E, Cavalheiro E A, Tan A M, Kupfer W R, Pretorius J K, Babb T L. et al . Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy: cell loss and mossy fiber sprouting. Epilepsia. 1993; 34 985-995
- 15 Lehmann T-N, Gabriel S, Eilers A, Njunting M, Kovács R, Schulze K. et al . Fluorescent tracer in pilocarpine-treated rats shows widespread aberrant hippocampal neuronal connectivity. Eur J Neurosci. 2001; 14 83-95
- 16 Boulton C L, von Haebler D, Heinemann U. Tracing of axonal connections by rhodamin-dextran-amine in the rat hippocampal-entorhinal cortex slice preparation. Hippocampus. 1992; 2 99-106
- 17 Dudek F E, Yasumura T, Rash J E. Non-synaptic mechanisms in seizures and epileptogenesis. Cell Biology International. 1998; 22 793-805
- 18 Baumgartner C, Elger C E, Hufnagel A, Oppel F, Runge U, Schramm J. et al . Qualitätsrichtlinien auf dem Gebiet der prächirurgischen Epilepsiediagnostik und operativen Epilepsietherapie. Akt Neurol. 2000; 27 88-89
- 19 European Federation of Neurological Societies Task Force . Pre-surgical evaluation for epilepsy surgery - European Standards. European Journal of Neurology. 2000; 7 119-122
- 20 Gabriel S, Kivi A, Kovács R, Lehmann T N, Lanksch W R, Meencke H J. et al . Effects of Barium on stimulus-induced changes in extracellular potassium concentration and field potentials in dentate gyrus and area CA1 of human epileptic hippocampus. Neurosci Lett. 1998b; 249 991-94
- 21 Babb T L, Kupfer W R, Pretorius J K, Crandall P H, Levesque M F. Synaptic reorganization by mossy fibers in human epileptic fascia dentata. Neuroscience. 1991; 42 351-363
- 22 Wyler A R, Hermann B P, Somes G. Extent of medial temporal resection on outcome from anterior temporal lobectomy: a randomized prospective study (see comments). Neurosurgery. 1995; 37 982-90, discussion 990 - 991
- 23 Okazaki M M, Evenson D A, Nadler J V. Hippocampal mossy fiber sprouting and synapse formation after status epilepticus in rats: visualization after retrograde transport of biocytin. J Comp Neurol. 1995; 352 515-534
-
24 Braak H.
The allocortex. In: Braak H (ed) Architectonics of the human telencephalic cortex. Berlin; Springer-Verlag 1980: 26-42 -
25 Amaral D G, Insausti R.
Hippocampal formation. In: Praxinos G (ed) The human nervous system. San Diego; Academic Press 1990: 711-755 - 26 Amaral D G, Witter M P. The three-dimensional organization of the hippocampal formation: A review of anatomical data. Neuroscience. 1989; 31 571-591
- 27 Freund T F, Buzsáki G. Interneurons of the hippocampus. Hippocampus. 1996; 6 347-470
- 28 Li X G, Somogyi P, Ylinen A, Buzsáki G. The hippocampal CA3 network: an in vivo intracellular labeling study. J Comp Neurol. 1994; 339 181-208
- 29 Frederickson C J, Klitenick M A, Manton W I, Kirkpatrick J B. Cytoarchitectonic distribution of zinc in the hippocampus of man and the rat. Brain Research. 1983; 273 335-339
- 30 McLardy T. Zinc enzymes and the hippocampal mossy fibre system. Nature. 1962; 194 300-302
- 31 de Lanerolle N C, Kim J H, Robbins R C, Spencer D D. Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Research. 1989; 495 387-395
- 32 Babb T L, Pretorius J K, Mello L E, Mathern G W, Levesque M F. Synaptic reorganizations in epileptic human and rat kainate hippocampus may contribute to feedback and feedforward excitation. Epilepsy Res Suppl. 1992; 9 193-202, discussion 203
- 33 Buckmaster P S, Dudek F E. Neuron loss, granule cell axon reorganization, and functional changes in the dentate gyrus of epileptic kainate-treated rats. J Comp Neurol. 1997; 385 385-404
- 34 Cronin J, Obenaus A, Houser C R, Dudek F E. Electrophysiology of dentate granule cells after kainate-induced synaptic reorganization of the mossy fibers. Brain Res. 1992; 573 305-310
- 35 Leite J P, Babb T L, Pretorius J K, Kuhlman P A, Yeoman K M, Mathern G W. Neuron loss, mossy fiber sprouting, and interictal spikes after intrahippocampal kainate in developing rats. Epilepsy Res. 1996; 26 219-231
- 36 Mathern G W, Leite J P, Babb T L, Pretorius J K, Kuhlman P A, Mendoza D. et al . Aberrant hippocampal mossy fiber sprouting correlates with greater NMDAR2 receptor staining. Neuroreport. 1996; 7 1029-1035
- 37 Wuarin J P, Dudek F E. Electrographic seizures and new recurrent excitatory circuits in the dentate gyrus of hippocampal slices from kainate-treated epileptic rats. J Neurosci. 1996; 16 4438-4448
- 38 Babb T L, Kupfer W R, Pretorius J K. Recurrent excitatory circuits by „sprouted” mossy fibers into the fascia dentata of human hippocampal epilepsy. Epilepsia. 1988; 29 674
- 39 Franck J E, Pokorny J, Kunkel D D, Schwartzkroin P A. Physiologic and morphologic characteristics of granular cell circuitry in human epileptic hippocampus. Epilepsia. 1995; 36 543-558
- 40 Isokawa M, Levesque M F, Babb T L, Engel J. Single mossy fiber axonal systems of human dentate granule cells studied in hippocampal slices from patients with temporal lobe epilepsy [published erratum appears in J Neurosci 1993 Jun; 13 (6): following table of contents]. J Neurosci. 1993; 13 1511-1522
- 41 Lehmann T-N, Gabriel S, Kovács R, Eilers A, Kivi A, Schulze K. et al . Alterations of neuronal connectivity in area CA1 in hippocampal slices from human temporal lobe epilepsy patients and from pilocarpine-treated epileptic rats. Epilepsia. 2000; 41 190-194
- 42 Heinemann U, Beck H, Dreier J P, Ficker E, Stabel J, Zhang C L. The dentate gyrus as a regulated gate for the propagation of epileptiform activity. Epilepsy Res. 1992; 7, Suppl 273-280
- 43 Christian E P, Dudek F E. Electrophysiological evidence from glutamate microapplications for local excitatory circuits in the CA1 area of rat hippocampal slices. J Neurophysiol. 1988b; 59 110-123
- 44 Deuchars J, Thomson A M. CA1 pyramid-pyramid connections in rat hippocampus in vitro: dual intracellular recordings with biocytin filling. Neuroscience. 1996; 74 1009-1018
- 45 Esclapez M, Hirsch J C, Ben-Ari Y, Bernard C. Newly formed excitatory pathways provide a substrate for hyperexcitability in experimental temporal lobe epilepsy. J Comp Neurol. 1999; 408 449-460
- 46 Wheal H V, Chen Y, Mitchell J, Schachner M, Maerz W, Wieland H. et al . Molecular mechanisms that underlie structural and functional changes at the postsynaptic membrane during synaptic plasticity. Prog Neurobiol. 1998; 55 611-640
- 47 McKhann G M, Schoenfeld-McNeill J, Born D E, Haglund M M, Ojemann G A. Intraoperative hippocampal electrocorticography to predict the extent of hippocampal resection in temporal lobe epilepsy surgery. J Neurosurg. 2000; 93 44-52
- 48 Germano I M, Poulin N, Olivier A. Reoperation for recurrent temporal lobe epilepsy. J Neurosurg. 1994; 81 31-36
- 49 Gabriel S, Eilers A, Kivi A, Kovacs R, Schulze K, Lehmann T N. et al . Effects of Barium on stimulus induced changes in extracellular potassium concentration in area CA1 of hippocampal slices from normal and pilocarpine treated epileptic rats. Neurosci Lett. 1998a; 242 9-12
- 50 Kivi A, Lehmann T, Kovács R, Eilers A, Jauch R, Meencke H J. et al . Effects of barium on stimulus-induced rises of [K+]o in human epileptic non-sclerotic and sclerotic hippocampal area CA1. Eur J Neurosci. 2000; 12 2039-2048
Dr. med. Thomas-Nicolas Lehmann
Klinik für Neurochirurgie · Charité · Campus-Virchow-Klinikum · Humboldt-Universität zu Berlin
Augustenburger Platz 1
13353 Berlin