Z Orthop Ihre Grenzgeb 2002; 140(6): 681-689
DOI: 10.1055/s-2002-36044
Grundlagenforschung
Originalarbeit
© Georg Thieme Verlag Stuttgart · New York

Vorteile von Biomatrices bei der Chondrogenese von pluripotenten mesenchymalen Stammzellen

Advantages of Biomatrices in Chondrogenesis of Pluripotent Mesenchymal StemM.  Jäger1 , A.  Wild1 , M.  Fuß1 , A.  Werner1 , R.  Krauspe1
  • 1Orthopädische Universitätsklinik Düsseldorf (Direktor: Prof. Dr. med. R. Krauspe), Düsseldorf
Further Information

Publication History

Publication Date:
11 December 2002 (online)

Zusammenfassung

Studienziel: Die autologe In-vitro-Chondrozytenexpansion ist eine erst seit jüngerer Zeit angewandte Methode zur Behandlung von Knorpeldefekten. Durch zahlreiche Arbeitsgruppen konnte gezeigt werden, dass neben dem Periost und embryonalen Somitenmesoderm im humanen Knochenmark mesenchymale Progenitorzellen existieren, welche unter geeigneten Bedingungen in vitro chondrogen differenzieren. Ziel der Studie ist die Darlegung der gegenwärtigen Möglichkeiten und Grenzen einer chondrogenen Stammzelltherapie unter besonderer Berücksichtigung der verwendeten zellulären Carrier (Biomatrices) sowie die Diskussion der sich hieraus ergebenden Probleme und das Aufzeigen von entsprechenden Lösungsmöglichkeiten. Methode: Zur Erfassung der gegenwärtig vorliegenden experimentellen und klinischen Daten wird eine umfassende Literaturrecherche durchgeführt. Des Weiteren werden eigene zellkulturelle Erfahrungen eingebracht. Ergebnisse: Bei der Behandlung von osteochondralen Defekten existiert bisher kein suffizientes Therapieverfahren, welches Progenitorzellen in ein therapeutisches Konzept im Sinne einer lokalen Chondrozytenregeneration einbindet. Die Gründe hierfür liegen in den Schwierigkeiten, ein längerfristiges, biomechanisch und histologisch stabiles hyalines Gewebe zu kultivieren, welches sich zugleich als In-vivo-Transplantat eignet und in situ eine sichere lokale Verankerung in der Defektzone zulässt. Schlussfolgerung: Die systematische, zellkulturelle Evaluierung eines Biowerkstoffes durch chondrogene Progenitorzell-Linien kann wertvolle Hinweise auf die chondrogene Potenz einer Matrix liefern.

Abstract

Aim: The autologous in vitro expansion of chondrocytes is a new method for the treatment of localized cartilage defect zones in humans. In the past several investigators have shown the occurrence of mesenchymal stem cells (MSC) in human bone marrow, periosteum and somite mesoderm. Moreover it has been shown that these progenitor cells are able to differentiate into chondral tissue under special in vitro conditions. The following study shows current possibilities and borders of a chondrogenetic stem cell therapy. Furthermore advantages and disadvantages of different cellular biomatrix carriers are described, cartilage tissue engineering-related problems are discussed and possible solutions were pointed out. Methods: A literature investigation served for evaluation of the present clinical and experimental data. Furthermore our own cell culture experiences were considered. Results: Until now there exists no clinical concept using the potential of MSC for cartilage tissue engineering. Reasons are the lack of biomechanical and histological stability and handling problems of the cultivated cartilage tissue, especially the difficulties to fix and secure the transplant in the cartilage defect zones in situ. Conclusion: The systematic investigation of biomatrices by chondrogenic progenitor cell culture systems may lead to important data for the evaluation of the chondrogenic potency biomatrices.



Literatur

  • 1 Aung T, Miyoshi H, Tun T, Ohshima N. Chondrooinduction of mouse mesenchymal stem cells in three-dimensional hiphly porous matrix scaffolds.  J Biomed Mater Res. 2002;  61 75-82
  • 2 Banfi A, Muraglia A, Dozin B, Mastrogiacomo M, Cancedda R, Quadrto R. Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: Implications for their use in cell therapy.  Experimental Hematology. 2000;  28 707-715
  • 3 Barry F P, Mclntosh A, Murphy J M. Chondrogenic constructs of mesenchymal stem cells on Hyaff-11, a hyaluronan ester, as implants for repair of osteochondral lesions.  Tran Orthop Res Soc. 1998;  23 799
  • 4 Barry F P, Boynton R E, Haynesworth S, Murphy J M, Zaia J. The monoclonal antibody SH-2 Raised against Human Mesenchymal Stem Cells, Recognize an Epitope Endoglin (CD 105).  Biochem Biophys Res Comm. 1999;  265 134-139
  • 5 Barry F, Boynton R E, Liu B, Murphy J M. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matix components.  Exp Cell Res. 2001;  268 189-200
  • 6 Bell S E, Mavila A, Salazar R, Bayless K J, Kanagala S, Maxwell S A, Davis G E. Differential gene expression during capillary morphogenesis in 3D collagen matrices: regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signaling.  J Cell Sci. 2001;  114 2755-2773
  • 7 Benedetti L, Cortivo R, Bert T, Pea F, Mazzo M, Moras M, Abatangelo G. Biocompatibility on biodegradation of different hyaluronan derivatives (Hyaff) inplanted in rats.  Biomaterials. 1993;  14 1154-1160
  • 8 Bonaventure J, Kadhom N, Cohen-Solal L, Ng K H, Bourguignon J, Lasselin C, Freisinger P. Reexpression of Cartilage-Specific Genes by Dedifferentiated Human Articular Chondrocytes Cultured in Alginate Beads.  Exp Cell Res. 1994;  212 97-104
  • 9 Brewton R, Wright D, Mayne R. Structural and functional comparison of type IX collagen-proetoglycan from chicken cartilage and citreous humor.  J Biol Chim. 1991;  266 4752-4757
  • 10 Brighton C T, Heppenstall R B. Oxygen tension in zones of the epiphysial plate, the metaphysis and diaphysis.  J Bone Joint Surg. 1971;  53-A 719-728
  • 11 Bruckner P, van der Rest M. Structure and function of cartilage collagens.  Micros Res Tech. 1994;  28 378-384
  • 12 Bruder S P, Jaiswal N, Haynesworth-SE . Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation.  J Cell Biochem. 1997;  64 278-294
  • 13 Bruder S P, Ricalton N S, Boynton R E, Connolly T J, Jaiswat N, Zaia J, Barry F P. Mesenchymal stem cell surface antigen SB-10 corresponds to activated leukocyte cell adhesion molecule and is involved in osteogenic differentiation.  J Bone Miner Res. 1998;  13 655-563
  • 14 Burg M, Tillet E, Timpl R, Stallcup W. Binding of the NG2 proteoglycan to type IV collagen and other extracellular matrix molecules.  J Biol Chem. 1996;  271 26110-26116
  • 15 Buschmann M D, Gluzband Y a, Grodzinsky A J, Hunziker E B. Mechanical compression modulates matrix biosynthesis in chondrocyte / agarose culture.  J Cell Sci. 1995;  108 1497-1508
  • 16 Butnariu-Ephrat M, Robinson D, Mendes D G, Halperin N, Nevo Z. Resurfacing of Goat Articular Cartilage by Chondrocytes Derived From Bone Marrow.  Clin Orthop Rel Res. 1996;  330 234-243
  • 17 Caplan A I. Mesenchymal stem cells.  J Orthop Res. 1991;  9 641-650
  • 18 Chisato U, Masahiro I, Kanatani N, Carolina Y, Liu Y, Enomoto I, Tomoharuu O, Enomoto H, Nakata K, Takada K, Kurisu K, Komori T. Skeletal Malformations Causes by Overexpression of Cbfa 1 or Its Dominant Negative Form in Chondrocytes.  J Cell Biology. 2001;  153 87-99
  • 19 Chow G, Knudson C B, Homandberg G, Knudson W. Increased expression of CD 44 in bovine articular chondrocytes by catabolic cellular mediators.  J Biol Chem. 1995;  270 34-41
  • 20 Cortivo R, Brun P, Rasterelli A, Abatangelo G. In vitro studies on biocompatibility of hyaluronic acid esters.  Biomaterials. 1991;  12 727-730
  • 21 Cortivo R, Brun P, Cardarelli L, O'Regan M, Conconi T, Radica M, Abatangelo G. Antioxidant effects of hyaluronan and its - methylprednisolone derivative in chondrocyte and cartilage cultures.  Semin Arthritis Rheu. 1996;  26 (1) 492-501
  • 22 Cremer M A, Rosloniec E, Kang A H. The cartilage collagens: a review of their structure, organization, and role in the pathogenesis of experimental arthritis in animals and in human rheumatic disease.  J Mol Med. 1998;  76 275-288
  • 23 Cserjesi P, Brown D, Ligon K L, Lyons G E, Copeland N G, Gilbert D J, Jenkins N A, Olson E N. Scleraxis: a basic helix-loop-helix protein that prefigres skeletal formation during mouse embyogenesis.  Development. 1995;  121 1099-1110
  • 24 Deutsch U, Dressler G R, Gruss P. Pax 1, a member of a paired box homologous murine gene family, is expressed in segmented structures during development.  Cell. 1988;  53 617-625
  • 25 Domm C, Fay J, Schünke M, Kurz B. Influence of intermittent hydrostatic pressure and low oxygen partialpressure on the redifferentiation of dedifferentiated articular chondrocytes in alginate culture.  Orthopäde. 2000;  29 91-99
  • 26 Ducy P, Zhang R, Geoffroy V, Ridall A I, Karsenty G. Ost2/Cbfa1: a transcriptional activator of osteoblast differentiation.  Cell. 1997;  89 747-754
  • 27 Einhorn T A. Clinically Applied Models of Bone Regeneration in Tissue Engineering Research.  Clin Orthop Rel Res. 1999;  367S 59-67
  • 28 Eyre D, Wu J. Collagen structure and cartilage matrix integrinty.  J Rheumatol. 1995;  22 82-85
  • 29 Fang X, Burg M, Barritt D, Dahlin-Huppe K, Nishiyama A, Stallcup W. Cytoskeletal reorganization induced by enagement of the NG2 proteoglycan leads to cell spreading and migration.  Mol Biol Cell. 1999;  10 3373-3387
  • 30 Fortier L A, Lust G, Mohammed H O, Nixon A J. Coordinate upregulation of cartilage matrix synthesis in fibrin cultures supplemented with xogenous insulinlike growth factor-I.  J Orthop Res. 1999;  17 (4) 467-74
  • 31 Franzen A, Heinegard D, Solursh M. Evidence for sequential appearance of cartilage matrix proteins in developing mouse limbs and in cultures of mouse mesenchymal cells.  Differentiation. 1987;  36 199-210
  • 32 Freed L E, Martin I, Vunjak-Novakovic G. Frontiers in Tissue Engineering.  Clin Orthop Rel Res. 1999;  367 46-58
  • 33 Fuss M, Ehlers E M, Russlies M, Rohwedel J, Behrens P. Characteristics of human chondrocytes, osteoblasts and fibroblasts seeded onto a type I/III collagen sponge under different culture conditions. A light, scanning and transmission electron microscopy study.  Anat Anz. 2000;  182 (4) 303-310
  • 34 Gao J, Dennis J E, Solchaga L A, Wadallah A S, Goldberg V M, Caplan A I. Tissue-Engineered Fabrication of an Osteochondral Composite Graft Using Rat Bone Marrow-Derived Mesenchymal Stem Cells.  Tissue Eng. 2001;  7 363-371
  • 35 Glowacki J. Engineered Cartilage, Bone, Joints, and Menisci.  Cell Tissues Organs. 2001;  169 302-308
  • 36 Goretzki L, Burg M, Grako K, Stallcup W. High affinity binding of bFGF and PDGF-AA to the core protein of the NG2 proteoglycan.  J Biol Chem. 1999;  274 16831-16837
  • 37 Grako K A, Stallcup W. Participation of the NG2 proteoglycan in rat aortic smooth muscle cell responses to platelet-derived-growth factor.  Exp Cell Res. 1995;  221 231-240
  • 38 Grigolo B, Lisignoli G, Piacentini A, Fiorini M, Roseti L, Major E O, Duca M, Pavesio A, Facchini A. Evidence for re-differentiation of human chondrocytes deeded on a hyaluronan derivateve scafffold.  Arthritis Res. 2001;  3 (suppl 1) P7
  • 39 Hiraki Y, Shukunami C, lyama K, Mizuta H. Differentiation of chondrogenic precursor cells during the regeneration of articular cartilage.  Osteoarthritis Cartilage. 2001;  9 (Suppl A) 102-108
  • 40 Huang J I, Beanes S R, Zhu M, Lorenz H P, Hedrick M H, Benhaim P. Rat extramedullary Adipose Tissue as a Source of Osteochondrogenic Progenitor Cells.  Plastic Reconstruct Surg. 2002;  109 1033-1041
  • 41 Hunziker E B, Quinn T M, Hauselmann H. Quantitative structural organization of normal adult human articular cartilage.  Osteoarthritis Cartilage. 2002;  19 564-572
  • 42 Johnstone B, Hering T M, Caplan A I, Goldberg V M, Yoo J U. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells.  Exp Cell Res. 1998;  238 265-272
  • 43 Johnstone B, Yoo J U. Autologues Mesenchymal Progenitor Cells in Articular Cartilage Repair.  Clin Orthop. 1999;  367S 156-162
  • 44 Kaps C, Bramlage C, Smolian H, Haisch A, Ungethüm U, Burmester G R, Sittinger M, Gross G, Häupl T. Bone Morphogenic Proteins Promote Cartilage Differentiation and Protect Engineered Cartilage From Fibroblast Invasion and Destruction.  Arthritis Rheumatism. 2002;  46 149-162
  • 45 Kienzle G, von Kempis J. Vascular cell adhseion molecule 1 (CD106) on primary human articular chondrocytes: functional regulating of expression by cytokines and comparison with intercellular adhesion molecule 1 (CD54) and very late antigen 2.  Arthritis Rheum. 1998;  41 1296-1305
  • 46 Kirsch T, von der Mark K. Remodelling of collagen types I, II and X and calcification of human fetal cartilage.  Bone Miner. 1992;  18 107-117
  • 47 Kramer J, Hegert C, Guan K, Wobus A M, Muller P K, Rohwedel J. Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4.  Mech Dev. 2000;  92 193-205
  • 48 Lennon D P, Edmison J M, Caplan A I. Cultivation of Rat Marrow-Derived Mesenchymal Stem Cells in Reduced Oxygen Tension: Effects on In Vitro and In Vivo. Osteochondrogenesis.  J Cell Physiol. 2001;  187 345-355
  • 49 Lohmann C H, Schwartz Z, Niederauer G G, Boyan B D. The phenotype and pretreatment of chondrocytes with PDGF regulate cartilage formation in biodegradable scaffolds in vivo.  Orthopäde. 2000;  29 120-128
  • 50 Lu L, Yaszemski M J, Mikos A G. TGF-beta1 release from biodegradable polymer microparticles: its effects on marrow stromal osteoblast function.  J Bone Joint Surg. 2001;  83-A (Suppl 1(Pt 2)) S82-91
  • 51 Luo G, D'Souza D, Hogue D, Karsenty G. The matrix Gla protein is a marker of the chondrogenesis cell lineage during mouse development.  J Bone Miner Res. 1995;  10 325-334
  • 52 Mayne R, Brewton R, Mayne P, Baker J. Isolation and characterization of the chains of type V/type XI collagen present in bovine vitreous.  J Biol Chem. 1993;  268 9381-9386
  • 53 Mackay A M, Beck S C, Murphy J M, Barry F P, Chichester C O, Pittenger M F. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow.  Tissue Eng. 1998;  4 415-428
  • 54 Miao D, Andrew S. Histochemical Localization of Alkaline Phosphatase Activity in Decalcified Bone and Cartilage.  J Histochem Cytochem. 2002;  50 333-340
  • 55 Mizuno S, Glowacki J. Effects of 2 % and 19 % oxygen on matrix production by bovine articular chondrocytes in 3D culture.  J Bone Miner Res. 2000;  15 467
  • 56 Munroe R, Olgunturk R, Fryns J, van Maldergem L, Ziereisen F, Yuksel B, Gardiner R, Chung E. Mutations in the gene encoding the human matrix Gla protein cause Keutel syndrome.  Nat Genet. 1999;  21 142-144
  • 57 Murphy J M, Dixon K, Beck S, Fabian D, Feldman A, Barry F. Reduced Chondrogenic and Adipogenic Activity of Mesenchymal Stem Cells From Patients With Advanced Osteoarthritis.  Arthritis Rheumatism. 2002;  46 704-713
  • 58 Newmann B, Gigout L I, Sundre L, Grant M E, Wallist G A. Coordinated expression of matrix Gla protein is required during endochondral ossification for chonrdocyte survival.  J Cell Biol. 2001;  154 659-666
  • 59 Nicoll S B, Barak O, Csoka A B, Bhatnagar R S, Stern R. Hyaluronidases and CD44 undergo differential modulation during chondrogenesis.  Biochem Biophys Res Commun. 2002;  292 819-825
  • 60 Noth U, Tuli R, Osyczka A M, Danielson K G, Tuan R S. In vitro engineered cartilage constructs produced by pree-coating biodegradable polymer with human mesenchymal stem cells.  Tissue Eng. 2002;  8 131-144
  • 61 Nishiyama A, Dahlin K, Stallcup W. The expression of NG2 proteoglycan in developing rat limb.  Development. 1991;  111 933-944
  • 62 Nixon A J, Fortier L A, Williams J, Mohammed H. Enhanced repair of extensive articular defects by insulin-like growth factor-I-laden fibrin composites.  J Orthop Res. 1999;  17 475-487
  • 63 Pittenger M F, Mackay A M, Beck S C, Jaiswal R K, Douglas R, Mosca J D, Moorman M A, Simoneti D W, Craig S, Marshak D R. Multilineage Potential of Adult Human Mesenchymal Stem Cells.  Science. 1999;  284 143-147
  • 64 Pittenger M F, Mbalaviele G, Black M, Mosca J D, Marshak D R. Mesenchymal Stem Cells. Koller-MR, Palsson-BO, Masters-JRW Human Cell Culture, Vol. IV, Primary Mesenchymal Cells. Dodrecht, Netherlands: Kluwer Academic Publishers 2001: 189-208
  • 65 Pullig O, Pfander D, Swoboda B. Molekulare Grundlagen der Arthroseinduktion und -progression.  Orthopäde. 2001;  30 825-833
  • 66 Quintavalla J, Uziel-Fusi S, Yin J, Boehnlein E, Pastor G, Blancuzzi V, Singh H N, Kraus K H, O'Byrne E, Pellas T C. Fluorescently labeled mesenchymal stem cells (MSCs) maintain multilineage potential and can be detected following implantation into articular cartilage defects.  Biomaterials. 2002;  23 109-119
  • 67 Radice M, Brun P, Cortivo R, Scapinelli R, Battaliard C, Abatangelo G. Hyaluronbased biopolymers als delivery vehicles for bone-marrow-derived mesenchymal progenitors.  J Biomed Mater Res. 2000;  50 (2) 101-109
  • 68 Schaefer D J, Klemt C, Zhang X H, Stark G B. Tissue Engineering mit mesenchymalen Stammzellen zur Knorpel- und Knochenneubildung.  Chirurg. 2000;  71 1001-1008
  • 69 Schmid T, Popp R, Linsenmayer T. Hypertrophic cartilage matrix: type X collagen, suparmolecular assembly, and calcification.  Ann NY Acad Sci. 1990;  580 64-73
  • 70 Sekiya I, Vuoristo J T, Larson B L, Prockop D J. In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis.  Proc Natl Acad Sci USA. 2002;  99 4397-4402
  • 71 Srinivas G R, Barrach H J, Chichester C O. Quantitative immunoassays for type II collagen and its cyanogen bromide peptides.  J Immunol Methods. 1993;  159 5362
  • 72 Stallcup W B, Dahlin-Huppe K. Chondroitin sulfate and cytoplasmic domaindependent membrane targeting of the NG2 proteoglycan promotes retraction fiber formation and cell polarization.  J Cell Science. 2001;  114 2315-2325
  • 73 Tubo R, Brown L. Articular Cartilage. Koller-MR, Palsson-BO, Masters-JRW Human Cell Culture, Vol. IV, Primary Mesenchymal Cells. Dodrecht, Netherlands: Kluwer Academic Publishers 2001: 189-208
  • 74 van der Rest M, Mayne R. In: Mayne-R, Burgesson-R Structure and function of collagen types. Orlando: Academic 1987: 195-221
  • 75 Velikonja N K, Wozniak G, Malicev E, Knezevic M, Jeras M. Protein synthesis of human articular chondrocytes cultured in vitro for autologous transplantation.  Pflugers Arch. 2001;  442 169-170
  • 76 Wakitani S, Goto T, Pineda S J, Young R G, Mansour J M, Caplan A I, Goldberg V M. Mesenchymal Cell-Based Repair of Large, Full-Thickness Defects of Articular Cartilage.  J Bone Joint Surg. 1994;  76-A 579-592
  • 77 Wallin J, Wilting J, Koseki H, Fritsch R, Christ B, Balling R. The role of Pax-1 in axial skeleton development.  Deveolpment. 1994;  120 1109-1121
  • 78 Weber M, Steinert A, Jork A, Dimmler A, Thurmer F, Schutze N, Hendrich C, Zimmerman U. Formation of cartilage matrix proteins by BMP-transfected murine mesenchymal stem cells encapsulated in a novel class of alginates.  Biomaterials. 2002;  23 2003-2013
  • 79 Worster A A, Brower-Toland B D, Fortier L A, Bent S J, Williams J, Nixon A J. Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming growth factor-beta1 in monolayer and insulin-like growth factor-I in a three-dimensional matrix.  J Orthop Res. 2001;  19 (4) 738-749
  • 80 Wilke A, Heil F, Jäger M, Kienapfel H, Griss P, Franke R P, Jones D. Biocompatibility of testing bioresorbable polymers Poly (L-Lactid-CO D. L-Lactid) 00:19 and 70:30. 7th Annual Conference of European Orthopaedic Research Society (EORS) in Barcelona, 22./23. April 1997 (Spain)
  • 81 Wright E, Hargrave M R, Christiansen J, Cooper L, Kun J, Evans T, Gangadharan U, Greenfield A, Koopman P. The Sry-related gene Sox 9 is expressed during chondrogenesis in mouse embryos. Nat.  Genet. 1995;  9 15-20
  • 82 Yada T, Suzuki S, Kobayashi M, Hoshino T, Horie K, Kimata K. Occurrence in chick embryo vitreos humor of a type IX collagen proteoglycan with an extraordinariliy large chondroitin sulfate chain and short alpha 1 polypeptide.  J Biol Chem. 1990;  265 6992-6999
  • 83 Yagami K, Suh J Y, Enomoto-Iwamoto M, Koyama E, Abrams W, Shapiro I, Pacifici M, Iwamoto M. Matrix GLA protein is a developmental regulator of chondrocyte mineralization and when constitutively ossification in the limb.  J Cell Biol. 1999;  147 1097-1108
  • 84 Yang X, Chen L, Xu X, Li C, Huang C, Deng C X. TGFβ/Smad3 Signals Repress Chondrocyte Hypertrophic Differentiation and Re Required for Maintaining Articular Cartilage.  J Cell Biology. 2001;  153 35-41
  • 85 Yoo J U, Barthel T S, Nishimura K, Solchaga L, Caplan A I, Goldberg V M, Johnstone B. The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells.  J Bone Joint Surg. 1998;  80-A (12) 1745-1757
  • 86 Ysart G E, Mason R M. Responses of articular cartilage explant cultures to different oxygen tensions.  Biochem Biophys Acta. 1994;  1221 15-20

Dr. med. Marcus Jäger

Orthopädische Universitätsklinik Düsseldorf

Moorenstraße 5

40225 Düsseldorf

Phone: 0211-8117960

Email: drjaegermarcus@yahoo.de