Zusammenfassung
Das intestinale Epithel ist zentraler Bestandteil der defensiven
Schutzbarriere des mukosalen Immunsystems - mit einer bipolaren
Grenzfläche zwischen zahlreichen lumenalen Mikroben einerseits und
Immunzellen der Lamina propria andererseits. Intestinale Epithelzellen
exprimieren verschiedene “pattern recognition receptors”, die zur
frühzeitigen Erkennung von “pathogen-associated molecular
patterns” als „fremd” dienen und gezielte angeborene
Immunantworten zur Verteidigung initiieren. Es wird hier das derzeitige
Verständnis zusammengefasst, wie das intestinale Epithel mit verschiedenen
angeborenen Immuneigenschaften lumenale Homöostase sichert, und es wird
diskutiert, wie deren Dysregulation eine zentrale pathogenetische Rolle in der
überschießenden Immunantwort bei chronisch-entzündlichen
Darmerkrankungen spielen könnte.
Abstract
The intestinal epithelium serves as an essential defensive barrier
of the mucosal immune system that forms a bipolar interface between the
diverse populations of microbes of the lumen and subjacent immune cells present
in the lamina propria. Intestinal epithelial cells express various pattern
recognition receptors - poised to recognize microbial
“pathogen-associated molecular patterns” as “non-self”
and to rapidly initiate innate immune responses of survival and active defense
strategies against lumenal pathogens. Current understanding of the variety of
innate immune features present in intestinal epithelium to maintain homeostasis
is summarized and the mechanisms through which dysregulation may play a central
role in initiation and perpetuation of inflammatory bowel disease are
discussed.
Schlüsselwöter
Angeborene
Immunität - Intestinales
Epithel - Wirtsverteidigung - Mukosa - Toll-like
Rezeptoren - Nods - Apoptose
Key words
Innate immunity - intestinal
epithelium - host defense - mucosa - toll-like
receptors - nods - apoptosis
1
MacDonald T T, Pettersson S.
Bacterial regulation of intestinal immune
responses.
Inflamm Bowel
Dis.
2000;
6
116-122
2
Podolsky D K.
Mucosal immunity and inflammation. V. Innate mechanisms of
mucosal defense and repair: the best offense is a good defense.
Am J
Physiol.
1999;
277
G495-499
3
Hecht G.
Innate mechanisms of epithelial host defense: spotlight on
intestine.
Am J
Physiol.
1999;
277
C351-C358
4
Podolsky D K, Lynch-Devaney K, Stow J L. et al .
Identification of human intestinal trefoil factor. Goblet
cell-specific expression of a peptide targeted for apical
secretion.
J Biol
Chem.
1993;
268
6694-6702
5
Andoh A, Kinoshita K, Rosenberg I. et al .
Intestinal trefoil factor induces decay-accelerating
factor expression and enhances the protective activities against complement
activation in intestinal epithelial cells.
J
Immunol.
2001;
167
3887-3893
6
O’Neil D A, Porter E M, Elewaut D. et al .
Expression and regulation of the human beta-defensins hBD-1
and hBD-2 in intestinal epithelium.
J
Immunol.
1999;
163
6718-6724
7
Hase K, Eckmann L, Leopard J D. et al .
Cell Differentiation Is a Key Determinant of Cathelicidin
LL-37/Human Cationic Antimicrobial Protein 18 Expression by Human Colon
Epithelium.
Infect
Immun.
2002;
70
953-963
8
Kawasaki Y, Tazume S, Shimizu K. et al .
Inhibitory effects of bovine lactoferrin on the adherence of
enterotoxigenic Escherichia coli to host cells.
Biosci Biotechnol
Biochem.
2000;
64
348-354
9
Kruzel M L, Harari Y, Chen C Y. et al .
Lactoferrin protects gut mucosal integrity during endotoxemia
induced by lipopolysaccharide in
mice.
Inflammation.
2000;
24
33-44
10
Santini D, Pasquinelli G, Mazzoleni G. et al .
Lysozyme localization in normal and diseased human gastric
and colonic mucosa. A correlative histochemical, immunohistochemical and
immunoelectron microscopic
investigation.
Apmis.
1992;
100
575-585
11
Grossman E M, Longo W E, Mazuski J E. et al .
Role of cytoplasmic and secretory phospholipase A2 in
intestinal epithelial cell prostaglandin E2 formation.
Int J Surg
Investig.
2000;
1
467-476
12
Schultsz C, Van Den
Berg F M, Ten K ate
FW. et al .
The intestinal mucus layer from patients with inflammatory
bowel disease harbors high numbers of bacteria compared with
controls.
Gastroenterology.
1999;
117
1089-1097
13
Sudha P S, Devaraj H, Devaraj N.
Adherence of Shigella dysenteriae 1 to human colonic
mucin.
Curr
Microbiol.
2001;
42
381-387
14
Mantle M, Rombough C.
Growth in and breakdown of purified rabbit small intestinal
mucin by Yersinia enterocolitica.
Infect
Immun.
1993;
61
4131-4138
15
Janeway C A
Jr, Medzhitov R.
Innate immune recognition.
Annu Rev
Immunol.
2002;
20
197-216
16
Beatty W L, Meresse S, Gounon P. et al .
Trafficking of Shigella lipopolysaccharide in polarized
intestinal epithelial cells.
J Cell
Biol.
1999;
145
689-698
17
Hornef M W, Frisan T, Vandewalle A. et al .
Toll-like Receptor 4 Resides in the Golgi Apparatus and
Colocalizes with Internalized Lipopolysaccharide in Intestinal Epithelial
Cells.
J Exp
Med.
2002;
195
559-570
18
Cario E, Brown D, McKee M. et al .
Commensal-associated molecular patterns induce selective
toll-like receptor-trafficking from apical membrane to cytoplasmic compartments
in polarized intestinal epithelium.
Am J
Pathol.
2002;
160
165-173
19
Medzhitov R, Janeway C A.
Innate Immunity.
N Engl J
Med.
2000;
343
338-344
20
Pugin J, Schurer-Maly C C, Leturcq D. et al .
Lipopolysaccharide activation of human endothelial and
epithelial cells is mediated by lipopolysaccharide-binding protein and soluble
CD14.
Proc Natl Acad Sci U S
A.
1993;
90
2744-2748
21
Cario E, Rosenberg I M, Brandwein S L. et al .
Lipopolysaccharide activates distinct signaling pathways in
intestinal epithelial cell lines expressing Toll-like receptors.
J
Immunol.
2000;
164
966-972
22
Funda D P, Tuckova L, Farre M A. et al .
CD14 is expressed and released as soluble CD14 by human
intestinal epithelial cells in vitro: lipopolysaccharide activation of
epithelial cells revisited.
Infect
Immun.
2001;
69
3772-3781
23
Martin-Villa J M, Ferre-Lopez S, Lopez-Suarez J C. et al .
Cell surface phenotype and ultramicroscopic analysis of
purified human enterocytes: a possible antigen-presenting cell in the
intestine.
Tissue
Antigens.
1997;
50
586-592
24
Meijssen M A, Brandwein S L, Reinecker H C. et al .
Alteration of gene expression by intestinal epithelial cells
precedes colitis in interleukin-2-deficient mice.
Am J
Physiol.
1998;
274
G472-479
25
Labeta M O, Vidal K, Nores J E. et al .
Innate recognition of bacteria in human milk is mediated by a
milk-derived highly expressed pattern recognition receptor, soluble
CD14.
J Exp
Med.
2000;
191
1807-1812
26
Uehara A, Sugawara S, Tamai R. et al .
Contrasting responses of human gingival and colonic
epithelial cells to lipopolysaccharides, lipoteichoic acids and peptidoglycans
in the presence of soluble CD14.
Med Microbiol Immunol
(Berl).
2001;
189
185-192
27
Schumann R R, Zweigner J.
A novel acute-phase marker: lipopolysaccharide binding
protein (LBP).
Clin Chem Lab
Med.
1999;
37
271-274
28
Le R oy D, Di
Padova F, Tees R. et al .
Monoclonal antibodies to murine lipopolysaccharide
(LPS)-binding protein (LBP) protect mice from lethal endotoxemia by blocking
either the binding of LPS to LBP or the presentation of LPS/LBP complexes to
CD14.
J
Immunol.
1999;
162
7454-7460
29
Lamping N, Dettmer R, Schroder N W. et al .
LPS-binding protein probtects mice from septic shock caused
by LPS or gram-negative bacteria.
J Clin
Invest.
1998;
101
2065-2071
30
Zweigner J, Gramm H J, Singer O C. et al .
High concentrations of lipopolysaccharide-binding protein in
serum of patients with severe sepsis or septic shock inhibit the
lipopolysaccharide response in human
monocytes.
Blood.
2001;
98
3800-3808
31
Vreugdenhil A C, Snoek A M, Greve J W. et al .
Lipopolysaccharide-binding protein is vectorially
secreted and transported by cultured intestinal epithelial cells and is present
in the intestinal mucus of mice.
J
Immunol.
2000;
165
4561-4566
32
Girardin S E, Tournebize R, Mavris M. et al .
CARD4/Nod1 mediates NF-kappaB and JNK activation by invasive
Shigella flexneri.
EMBO
Rep.
2001;
2
736-742
33
Philpott D J, Girardin S E, Sansonetti P J.
Innate immune responses of epithelial cells following
infection with bacterial pathogens.
Curr Opin
Immunol.
2001;
13
410-416
34
Inohara N, Ogura Y, Chen F F. et al .
Human nod1 confers responsiveness to bacterial
lipopolysaccharides.
J Biol
Chem.
2001;
276
2551-2554
35
Inohara N, Nunez G.
The NOD: a signaling module that regulates apoptosis and host
defense against
pathogens.
Oncogene.
2001;
20
6473-6481
36
Hisamatsu T, Suzuki M, Reinecker H C. et al .
NOD1 and NOD2, cytoplasmic LPS receptors, are expressed in
intestinal epithelial cells and regulated by proinflammatory
cytokines.
Gastroenterology
(Abstract-DDW2002).
2002;
in
press
37
Ogura Y, Bonen D K, Inohara N. et al .
A frameshift mutation in NOD2 associated with susceptibility
to Crohn’s
disease.
Nature.
2001;
411
603-608
38
Hugot J P, Chamalliard M, Zouali H. et al .
Association of NOD2 leucine-rich repeat variants with
susceptibility to Crohn’s
disease.
Nature.
2001;
411
599-603
39
Hampe J, Cuthbert A, Croucher P J. et al .
Association between insertion mutation in NOD2 gene and
Crohn’s disease in German and British
populations.
Lancet.
2001;
357
1925-1928
40
Hampe J, Frenzel H, Mirza M M. et al .
Evidence for a NOD2-independent susceptibility locus for
inflammatory bowel disease on chromosome 16p.
Proc Natl Acad Sci U S
A.
2002;
99
321-326
41
Cario E, Podolsky D K.
Differential alteration in intestinal epithelial cell
expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel
disease.
Infect
Immun.
2000;
68
7010-7017
42
Fusunyan R D, Nanthakumar N N, Baldeon M E. et al .
Evidence for an innate immune response in the immature human
intestine: Toll-like receptors on fetal enterocytes.
Pediatric
Res.
2001;
49
589-593
43
Gewirtz A T, Navas T A, Lyons S. et al .
Cutting edge: bacterial flagellin activates basolaterally
expressed tlr5 to induce epithelial proinflammatory gene
expression.
J
Immunol.
2001;
167
1882-1885
44
Abreu M T, Vora P, Faure E. et al .
Decreased expression of Toll-like receptor-4 and MD-2
correlates with intestinal epithelial cell protection against dysregulated
proinflammatory gene expression in response to bacterial
lipopolysaccharide.
J
Immunol.
2001;
167
1609-1616
45
Kawahara T, Kuwano Y, Teshima-Kondo S. et al .
Helicobacter pylori lipopolysaccharide from type I, but
not type II strains, stimulates apoptosis of cultured gastric mucosal
cells.
J Med
Invest.
2001;
48
167-174
46
Kawahara T, Kuwano Y, Teshima-Kondo S. et al .
Toll-like receptor 4 regulates gastric pit cell
responses to Helicobacter pylori infection.
J Med
Invest.
2001;
48
190-197
47
Lien E, Ingalls R R.
Toll-like receptors.
Crit Care
Med.
2002;
30
S1-S11
48
Zarember K A, Godowski P J.
Tissue expression of human Toll-like receptors and
differential regulation of Toll-like receptor mRNAs in leukocytes in response
to microbes, their products, and cytokines.
J
Immunol.
2002;
168
554-561
49
Muzio M, Bosisio D, Polentarutti N. et al .
Differential expression and regulation of toll-like receptors
(TLR) in human leukocytes: selective expression of TLR3 in dendritic
cells.
J
Immunol.
2000;
164
5998-6004
50
Visintin A, Mazzoni A, Spitzer J H. et al .
Regulation of Toll-like receptors in human monocytes and
dendritic cells.
J
Immunol.
2001;
166
249-255
51
Bogunovic M, Reka S, Evans K N. et al .
Functional Toll-like receptors (TLR) are expressed on
intestinal epithelial cells
(IEC).
Gastroenterology.
2000;
118
A804
(abstract)
52
Naik S, Kelly E J, Meijer L. et al .
Absence of Toll-like receptor 4 explains endotoxin
hyporesponsiveness in human intestinal epithelium.
J Pediatr
Gastroenterol
Nutr.
2001;
32
449-453
53
Smith P D, Smythies L E, Mosteller-Barnum M. et al .
Intestinal macrophages lack CD14 and CD89 and consequently
are down-regulated for LPS- and IgA-mediated activities.
J
Immunol.
2001;
167
2651-2656
54
Hausmann M, Spoettl T, Schoelmerich J. et al .
Induction of Toll-like Receptor 2 in human intestinal
myofibroblasts by interferon
gamma.
Gastroenterology.
2000;
118
A791
(abstract)
55
Hertz C J, Kiertscher S M, Godowski P J. et al .
Microbial lipopeptides stimulate dendritic cell
maturation via Toll-like receptor 2.
J
Immunol.
2001;
166
2444-2450
56
Takeuchi O, Hoshino K, Kawai T. et al .
Differential roles of TLR2 and TLR4 in recognition of
gram-negative and gram-positive bacterial cell wall
components.
Immunity.
1999;
11
443-451
57
Wang Q, Dziarski R, Kirschning C J. et al .
Micrococci and peptidoglycan activate
TLR2->MyD88->IRAK->TRAF->NIK->IKK->NF-kappaB signal
transduction pathway that induces transcription of
interleukin-8.
Infect
Immun.
2001;
69
2270-2276
58
Bulut Y, Faure E, Thomas L. et al .
Cooperation of Toll-like receptor 2 and 6 for cellular
activation by soluble tuberculosis factor and Borrelia burgdorferi outer
surface protein A lipoprotein: role of Toll-interacting protein and IL-1
receptor signaling molecules in Toll-like receptor 2
signaling.
J
Immunol.
2001;
167
987-994
59
Ozinsky A, Underhill D M, Fontenot J D. et al .
The repertoire for pattern recognition of pathogens by the
innate immune system is defined by cooperation between toll-like
receptors.
Proc Natl Acad Sci
USA.
2000;
97
13766-13771
60
Wyllie D H, Kiss-Toth E, Visintin A. et al .
Evidence for an accessory protein function for Toll-like
receptor 1 in anti-bacterial responses.
J
Immunol.
2000;
165
7125-7132
61
Edwards E W, Bogunovic M, Yager J. et al .
Toll-like receptor expression and function in intestinal
epithelial cells: An epithelial cell type co-expressing TLR1 and
TLR2.
FASEB.
2001;
(Abstract)
62
Hajjar A M, O’Mahony D S, Ozinsky A. et al .
Cutting edge: functional interactions between toll-like
receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble
modulin.
J
Immunol.
2001;
166
15-19
63
Alexopoulou L, Holt A C, Medzhitov R. et al .
Recognition of double-stranded RNA and activation of
NF-kappaB by Toll-like receptor
3.
Nature.
2001;
413
732-738
64
Hemmi H, Kaisho T, Takeuchi O. et al .
Small anti-viral compounds activate immune cells via the TLR7
MyD88-dependent signaling pathway.
Nat
Immunol.
2002;
3
196-200
65
Reed K A, Hobert M E, Kolenda C E. et al .
The Salmonella typhimurium flagellar basal body protein FliE
is required for flagellin production and to induce a pro-inflammatory response
in epithelial cells.
J Biol
Chem.
2002;
30
30
66
Hemmi H, Takeuchi O, Kawai T. et al .
A Toll-like receptor recognizes bacterial
DNA.
Nature.
2000;
408
740-745
67
Hoshino K, Takeuchi O, Kawai T. et al .
Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are
hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene
product.
J
Immunol.
1999;
162
3749-3752
68
Kawasaki K, Akashi S, Shimazu R. et al .
Involvement of TLR4/MD-2 complex in species-specific
lipopolysaccharide-mimetic signal transduction by Taxol.
J Endotoxin
Res.
2001;
7
232-236
69
Perera P Y, Mayadas T N, Takeuchi O. et al .
CD11b/CD18 acts in concert with CD14 and Toll-like receptor
(TLR) 4 to elicit full lipopolysaccharide and taxol-inducible gene
expression.
J
Immunol.
2001;
166
574-581
70
Tapping R I, Akashi S, Miyake K. et al .
Toll-like receptor 4, but not toll-like receptor 2, is a
signaling receptor for Escherichia and Salmonella
lipopolysaccharides.
J
Immunol.
2000;
165
5780-5787
71
Visintin A, Mazzoni A, Spitzer J A. et al .
Secreted MD-2 is a large polymeric protein that efficiently
confers lipopolysaccharide sensitivity to Toll-like receptor 4.
Proc
Natl Acad Sci
USA.
2001;
98
12156-12161
72
Viriyakosol S, Kirkland T, Soldau K. et al .
MD-2 binds to bacterial lipopolysaccharide.
J
Endotoxin
Res.
2000;
6
489-491
73
Hume D A, Underhill D M, Sweet M J. et al .
Macrophages exposed continuously to lipopolysaccharide and
other agonists that act via toll-like receptors exhibit a sustained and
additive activation state.
BMC
Immunol.
2001;
2
11
74
Xu Y, Tao X, Shen B. et al .
Structural basis for signal transduction by the
Toll/interleukin-1 receptor
domains.
Nature.
2000;
408
111-115
75
Lazou A hren
I, Bjartell A, Egesten A. et al .
Lipopolysaccharide-binding protein increases toll-like
receptor 4-dependent activation by nontypeable Haemophilus
influenzae.
J Infect
Dis.
2001;
184
926-930
76
Vogel S, Hirschfeld M J, Perera P Y.
Signal integration in lipopolysaccharide (LPS)-stimulated
murine macrophages.
J Endotoxin
Res.
2001;
7
237-241
77
Bainbridge B W, Darveau R P.
Porphyromonas gingivalis lipopolysaccharide: an unusual
pattern recognition receptor ligand for the innate host defense
system.
Acta Odontol
Scand.
2001;
59
131-138
78
Netea M G, van
Deuren M, Kullberg B J. et al .
Does the shape of lipid A determine the interaction of LPS
with Toll-like receptors?.
Trends
Immunol.
2002;
23
135-139
79
Asea A, Rehli M, Kabingu E. et al .
Novel signal transduction pathway utilized by extracellular
HSP70: Role of TLR2 and TLR4.
J Biol
Chem.
2002;
8
8
80
Vabulas R M, Ahmad-Nejad P, da
Costa C. et al .
Endocytosed HSP60 s use toll-like receptor 2 (TLR2)
and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in
innate immune cells.
J Biol
Chem.
2001;
276
31332-31339
81
Okamura Y, Watari M, Jerud E S. et al .
The extra domain A of fibronectin activates Toll-like
receptor 4.
J Biol
Chem.
2001;
276
10229-10233
82
Roger T, David J, Glauser M P. et al .
MIF regulates innate immune responses through modulation
of Toll-like receptor
4.
Nature.
2001;
414
920-924
83
Suzuki M, Podolsky D K.
Differential regulation of Toll-like receptors by pro- and
anti-inflammatory cytokines between human intestinal epithelial and monocytic
cell
lines.
Gastroenterology.
2001;
120
A-326
(abstract)
84
Randow F, Seed B.
Endoplasmic reticulum chaperone gp96 is required for innate
immunity but not cell viability.
Nat Cell
Biol.
2001;
3
891-896
85
Underhill D M, Ozinsky A, Hajjar A M. et al .
The Toll-like receptor 2 is recruited to macrophage
phagosomes and discriminates between
pathogens.
Nature.
1999;
401
811-815
86
Hacker H, Vabulas R M, Takeuchi O. et al .
Immune cell activation by bacterial CpG-DNA through myeloid
differentiation marker 88 and tumor necrosis factor receptor-associated factor
(TRAF)6.
J Exp
Med.
2000;
192
595-600
87
Kaisho T, Takeuchi O, Kawai T. et al .
Endotoxin-induced maturation of myd88-deficient dendritic
cells.
J
Immunol.
2001;
166
5688-5694
88
Zhang F X, Kirschning C J, Mancinelli R. et al .
Bacterial lipopolysaccharide activates nuclear factor-kappaB
through interleukin-1 signaling mediators in cultured human dermal endothelial
cells and mononuclear phagocytes.
J Biol
Chem.
1999;
274
7611-7614
89
Faure E, Equils O, Sieling P A. et al .
Bacterial lipopolysaccharide activates NF-kappaB through
toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells.
Differential expression of TLR-4 and TLR-2 in endothelial cells.
J
Biol
Chem.
2000;
275
11058-11063
90
Schnare M, Barton G M, Holt A C. et al .
Toll-like receptors control activation of adaptive immune
responses.
Nat
Immunol.
2001;
2
947-950
91
Burns K, Clatworthy J, Martin L. et al .
Tollip, a new component of the IL-1RI pathway, links IRAK to
the IL-1 receptor.
Nat Cell
Biol.
2000;
2
346-351
92
Kopp E, Medzhitov R, Carothers J. et al .
ECSIT is an evolutionarily conserved intermediate in the
Toll/IL-1 signal transduction pathway.
Genes
Dev.
1999;
13
2059-2071
93
Schroder N W, Pfeil D, Opitz B. et al .
Activation of mitogen-activated protein kinases p42/44, p38,
and stress-activated protein kinases in myelo-monocytic cells by Treponema
lipoteichoic acid.
J Biol
Chem.
2001;
276
9713-9719
94
Navarro L, David M.
p38-dependent activation of interferon regulatory factor 3 by
lipopolysaccharide.
J Biol
Chem.
1999;
274
35535-35538
95
Cario E, Mazurkiewicz J, Haar Dv.d. et al .
Commensal-associated peptidoglycan activates distinct
intestinal epithelial cell survival mechanisms via Toll-like receptor
2.
Gastroenterology
(Abstract-DDW2002).
2002;
in press
96
Fitzgerald K A, Palsson-McDermott E M, Bowie A G. et al .
Mal (MyD88-adapter-like) is required for Toll-like receptor-4
signal
transduction.
Nature.
2001;
413
78-83
97
Kawai T, Takeuchi O, Fujita T. et al .
Lipopolysaccharide stimulates the MyD88-independent pathway
and results in activation of IFN-regulatory factor 3 and the expression of a
subset of lipopolysaccharide-inducible genes.
J
Immunol.
2001;
167
5887-5894
98
Byrd-Leifer C A, Block E F, Takeda K. et al .
The role of MyD88 and TLR4 in the LPS-mimetic activity of
Taxol.
Eur J
Immunol.
2001;
31
2448-2457
99
Horng T, Barton G M, Medzhitov R.
TIRAP: an adapter molecule in the Toll signaling
pathway.
Nat
Immunol.
2001;
2
835-841
100
Dalpke A H, Opper S, Zimmermann S. et al .
Suppressors of cytokine signaling (SOCS)-1 and SOCS-3 are
induced by CpG-DNA and modulate cytokine responses in APCs.
J
Immunol.
2001;
166
7082-7089
101
Musikacharoen T, Matsuguchi T, Kikuchi T. et al .
NF-kappa B and STAT5 play important roles in the regulation
of mouse Toll-like receptor 2 gene expression.
J
Immunol.
2001;
166
4516-4524
102
Isberg R R, Normark S.
Host microbe interactions: bacteria. Innate immune responses:
attack and counter-attack.
Curr Opin
Microbiol.
2000;
3
13-15
103
Xavier R J, Podolsky D K.
Microbiology. How to get along-friendly microbes in a
hostile world
[comment].
Science.
2000;
289
1483-1484
104
Neish A S, Gewirtz A T, Zeng H. et al .
Prokaryotic regulation of epithelial responses by inhibition
of IkappaB-alpha
ubiquitination.
Science.
2000;
289
1560-1563
105
Cario E, Podolsky D K.
Lipopolysaccharide induces intestinal epithelial tolerance
via downregulation of the Toll-like receptor (TLR) signaling
pathway.
Gastroenterology.
2001;
120
A-327
(abstract)
106
Otte J M, Cario E, Podolsky D K.
Cross-tolerance of TLR ligands in intestinal epithelial
cells.
Gastroenterology
(Abstract-DDW2002).
2002;
in press
107
Lehner M D, Morath S, Michelsen K S. et al .
Induction of cross-tolerance by lipopolysaccharide and highly
purified lipoteichoic acid via different toll-like receptors independent
of paracrine mediators.
J
Immunol.
2001;
166
5161-5167
108
Hajishengallis G, Martin M, Sojar H T. et al .
Dependence of bacterial protein adhesins on toll-like
receptors for proinflammatory cytokine induction.
Clin Diagn Lab
Immunol.
2002;
9
403-411
109
Medvedev A E, Kopydlowski K M, Vogel S N.
Inhibition of lipopolysaccharide-induced signal transduction
in endotoxin-tolerized mouse macrophages: dysregulation of cytokine, chemokine,
and toll-like receptor 2 and 4 gene expression.
J
Immunol.
2000;
164
5564-5574
110
Sato S, Nomura F, Kawai T. et al .
Synergy and cross-tolerance between toll-like receptor (TLR)
2- and TLR4-mediated signaling
pathways.
J Immunol.
2000;
165
7096-7101
111
Martin M, Katz J, Vogel S N. et al .
Differential Induction of Endotoxin Tolerance by
Lipopolysaccharides Derived from Porphyromonas gingivalis and Escherichia
coli.
J
Immunol.
2001;
167
5278-5285
112
Levine A D.
Apoptosis: implications for inflammatory bowel
disease.
Inflamm Bowel
Dis.
2000;
6
191-206
113
Savill J.
Phagocyte recognition of apoptotic cells.
Biochem.
Soc.
Trans.
1996;
24
1065-1069
114
Anderson J M.
Maintaining a defense as the injured leave the field:
apoptosis and barrier function in the
intestine.
Gastroenterology.
2000;
119
1783-1787
115
Jones N L, Islur A, Haq R. et al .
Escherichia coli Shiga toxins induce apoptosis in epithelial
cells that is regulated by the Bcl-2 family.
Am J Physiol
Gastrointest Liver
Physiol.
2000;
278
G811-819
116
Kim J M, Eckmann L, Savidge T C. et al .
Apoptosis of human intestinal epithelial cells after
bacterial invasion.
J Clin
Invest.
1998;
102
1815-1823
117
Wada Y, Mori K, Iwanaga T.
Apoptosis of enterocytes induced by inoculation of a
strain of attaching and effacing Escherichia coli and verotoxin.
J
Vet Med
Sci.
1997;
59
815-818
118
Fish S M, Proujansky R, Reenstra W W.
Synergistic effects of interferon gamma and tumour necrosis
factor alpha on T84 cell
function.
Gut.
1999;
45
191-198
119
O'Connell J, Bennett M W, Nally K. et al .
Interferon-gamma sensitizes colonic epithelial cell lines to
physiological and therapeutic inducers of colonocyte apoptosis.
J
Cell
Physiol.
2000;
185
331-338
120
Strater J, Walczak H, Wellisch I. et al .
Normal colon epithelium is highly sensitive to CD95-induced
apoptosis. Indications for a role of cell death-induced CD95/CD95L systems
under inflammatory conditions.
Verh Dtsch Ges
Pathol.
1996;
80
217
121
Bu P, Keshavarzian A, Stone D D. et al .
Apoptosis: one of the mechanisms that maintains
unresponsiveness of the intestinal mucosal immune system.
J.
Immunol.
2001;
166
6399-6403
122
Abreu M T, Arnold E T, Chow J Y. et al .
Phosphatidylinositol 3-kinase-dependent pathways oppose
Fas-induced apoptosis and limit chloride secretion in human intestinal
epithelial cells. Implications for inflammatory diarrheal states.
J
Biol
Chem.
2001;
276
47563-47574
123
Öhd J F, Wikström K, Sjölander A.
Leukotrienes induce cell-survival signaling in intestinal
epithelial
cells.
Gastroenterology.
2000;
119
1007-1018
124
Gauthier R, Harnois C, Drolet J F. et al .
Human intestinal epithelial cell survival: differentiation
state-specific control mechanisms.
Am J Physiol Cell
Physiol.
2001;
280
C1540-1554
125
Choi K B, Wong F, Harlan J M. et al .
Lipopolysaccharide mediates endothelial apoptosis by a
FADD-dependent pathway.
J Biol
Chem.
1998;
273
20185-20188
126
Monick M M, Carter A B, Robeff P K. et al .
Lipopolysaccharide activates Akt in human alveolar
macrophages resulting in nuclear accumulation and transcriptional activity
of ß-catenin.
J.
Immunol.
2001;
166
4713-4720
127
Crouser E D, Julian M W, Weinstein D M. et al .
Endotoxin-induced ileal mucosal injury and nitric oxide
dysregulation are temporally dissociated.
Am J Respir Crit Care
Med.
2000;
161
1705-1712
128
Olaya J, Neopikhanov V, Uribe A.
Lipopolysaccharide of Escherichia coli, polyamines, and
acetic acid stimulate cell proliferation in intestinal epithelial
cells.
In Vitro Cell Dev Biol
Anim.
1999;
35
43-48
129
Riehl T, Cohn S, Tessner T. et al .
Lipopolysaccharide is radioprotective in the mouse intestine
through a prostaglandin-mediated
mechanism.
Gastroenterology.
2000;
118
1106-1116
130
Aliprantis A O, Yang R B, Mark M R. et al .
Cell activation and apoptosis by bacterial lipoproteins
through Toll-like
receptor-2.
Science.
1999;
285
736-739
131
Arbibe L, Mira J P, Teusch N. et al .
Toll-like receptor 2-mediated NF-kappa B activation requires
a Rac1-dependent pathway.
Nat
Immunol.
2000;
1
533-540
132
Roy S, Nicholson D W.
Cross-talk in cell death signaling.
J Exp
Med.
2000;
192
F12-F25
133
Jaunin F, Burns K, Tschopp J. et al .
Ultrastructural distribution of the death-domain-containing
MyD88 protein in HeLa cells.
Exp Cell
Res.
1998;
243
67-75
134
Aliprantis A O, Yang R B, Weiss D S. et al .
The apoptotic signaling pathway activated by Toll-like
receptor-2.
Embo
J.
2000;
19
3325-3336
135
Dupraz P, Cottet S, Hamburger F. et al .
Dominant negative MyD88 proteins inhibit interleukin-1beta
/interferon-gamma mediated induction of nuclear factor kappa B-dependent
nitrite production and apoptosis in beta cells.
J Biol
Chem.
2000;
275
37672-37678
136
Seki E, Tsutsui H, Nakano H. et al .
Lipopolysaccharide-induced IL-18 secretion from murine
Kupffer cells independently of MyD88 that is critically involved in induction
of production of IL-12 and IL-1β.
J.
Immunol.
2001;
166
2651-2657
137
Rokutan K, Kawahara T, Teshima S. et al .
Regulation of cell growth and death of gastric mucosal cells
by MOX1 and Toll-like
receptors.
Gastroenterology.
2000;
118
A539
138
Equils O, Faure E, Thomas L. et al .
Bacterial lipopolysaccharide activates HIV long terminal
repeat through Toll-like receptor 4.
J.
Immunol.
2001;
166
2342-2347
139
Inohara N, Koseki T, Lin J. et al .
An induced proximity model for NF-kappa B activation in the
Nod1/RICK and RIP signaling pathways.
J Biol
Chem.
2000;
275
27823-27831
140
Ogura Y, Inohara N, Benito A. et al .
Nod2, a Nod1/Apaf-1 Family Member That Is Restricted to
Monocytes and Activates NF-kappa B.
J Biol
Chem.
2001;
276
4812-4818
141
Sansonetti P J, Van
Tran N hieu G, Egile C.
Rupture of the intestinal epithelial barrier and mucosal
invasion by Shigella flexneri.
Clin Infect
Dis.
1999;
28
466-475
142
Podolsky D K.
Inflammatory bowel disease (2).
N Engl J
Med.
1991;
325
1008-1016
143
Shanahan F.
Inflammatory Bowel Disease: immunodiagnostics,
immunotherapeutics, and
ecotherapeutics.
Gastroenterology.
2001;
120
622-635
144
Duchmann R, Kaiser I, Hermann E. et al .
Tolerance exists towards resident intestinal flora but is
broken in active inflammatory bowel disease (IBD) [see
comments].
Clin Exp
Immunol.
1995;
102
448-455
145
Caradonna L, Amati L, Magrone T. et al .
Enteric bacteria, lipopolysaccharides and related cytokines
in inflammatory bowel disease: biological and clinical
significance.
J Endotoxin
Res.
2000;
6
205-214
146
Sartor R B.
Review article: Role of the enteric microflora in the
pathogenesis of intestinal inflammation and arthritis.
Aliment
Pharmacol Ther.
1997;
11 Suppl
3
17-22; discussion
22 - 13
147
Podolsky D K.
Lessons from genetic models of inflammatory bowel
disease.
Acta Gastroenterol
Belg.
1997;
60
163-165
148
de
Jong Y P, Abadia-Molina A C, Satoskar A R. et al .
Development of chronic colitis is dependent on the cytokine
MIF.
Nat
Immunol.
2001;
2
1061-1066
149
French N, Pettersson S.
Microbe-host interactions in the alimentary tract: the
gateway to understanding inflammatory bowel
disease.
Gut.
2000;
47
162-163
Dr. med. Elke Cario
Division of Gastroenterology & Hepatology, University of
Essen, Institutsgruppe I / C / R. 8
Virchowstr. 171
45147 Essen
Email: elke.cario@uni-essen.de