Planta Med 2002; 68(12): 1108-1112
DOI: 10.1055/s-2002-36352
Original Paper
Physiology
© Georg Thieme Verlag Stuttgart · New York

An in vitro and Hydroponic Growing System for Hypericin, Pseudohypericin, and Hyperforin Production of St. John’s Wort (Hypericum perforatum CV New Stem)

Susan J. Murch1 , H. P. Vasantha Rupasinghe2 , Praveen K. Saxena1
  • 1Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada
  • 2Guelph Center for Functional Foods, Laboratory Services Division, University of Guelph, Guelph, Ontario, Canada
Further Information

Publication History

Received: March 21, 2002

Accepted: July 31, 2002

Publication Date:
20 December 2002 (online)

Abstract

While the interest in medicinal plants continues to grow, there is a lack of basic information with respect to efficient protocols for plant production. Recently, in vitro regeneration protocols have been developed to provide masses of sterile, consistent St. John’s wort. The current study assessed the potential for acclimatization of in vitro grown St. John’s wort plantlets to a nutrient film technique (NFT) hydroponic system in a controlled environment greenhouse. Quantitative analyses of hypericin, hyperforin and pseudohypericin in flower tissues were used as the parameters to assess the quality of the greenhouse-grown plants. The three bioactive compounds were found to be present in similar or higher amounts than previously reported values for field-grown plants. These data provide evidence that greenhouse hydroponic systems can be effectively used for the efficient production of St. John’s wort and other medicinal plants.

References

  • 1 Perovic S, Muller W EG. Pharmacological profile of Hypericum extract: Effect of serotonin uptake by postsynaptic receptors.  Arzneimittel-Forsch. 1995;  45 1145-8
  • 2 Butterweck V, Petereit F, Winterhoff H, Nahrstedt A. Solubilized hypericin and pseudohypericin from Hypericum perforatum exert antidepressant activity in the forced swimming test.  Planta Med. 1998;  64 291-4
  • 3 Caputi P. Interleukin-6 involvement in antidepressant action of Hypericum perforatum .  Pharmacopsych. 2001;  34 S8-10
  • 4 Chatterjee S S, Noldner M, Koch E, Erdelmeier C. Antidepressant activity of Hypericum perforatum and hyperforin: The neglected possibility.  Pharmacopsychiat. 1998;  31 7-15
  • 5 Orth H C, Rentel C, Schmidt P C. Isolation, purity analysis and stability of hyperforin as a standard material from Hypericum perforatum L.  J Pharm Pharmacol. 1999;  51 193-200
  • 6 Murch S J, KrishnaRaj S, Saxena P K. Phytopharmaceuticals: Problems, limitations and solutions.  Scientific Reviews of Alternate Medicine. 2000;  4 33-8
  • 7 St. John’s Wort Monograph. American Herbal Pharmacoepea and Theraputic Compendium HerbalGram. American Botanical Council 1997 40: 37-45
  • 8 Tekel’ova D, Repcak M, Zemkova E, Toth J. Quantitative changes in dianthrones, hyperforin andflavonoids content in the flower ontogenesis of Hypericum perforatum .  Planta Med. 2000;  66 778-80
  • 9 Briskin D P, Gawienowski M G. Differential effects of light and nitrogen on production of hypericins and leaf glands in Hypericum perforatum .  Plant Physiol Biochem. 2001;  39 1075-81
  • 10 Southwell I A, Bourke C A. Seasonal variation in hypericin content of Hypericum perforatum L. (St. John’s wort).  Phytochemistry. 2001;  56 437-41
  • 11 Murch S J, KrishnaRaj S, Saxena P K. Phytopharmaceuticals: Mass-production, standardization and conservation.  Scientific Reviews of Alternate Medicine. 2000;  4 39-43
  • 12 Murch S J, Choffe K L, Victor J MR, Slimmon T Y, KrishnaRaj S, Saxena PK Thidiazuron-induced regeneration from hypocotyl cultures of S t. John’s wort (Hypericum perforatum cv. Anthos).  Plant Cell Reports. 2000;  19 576-81
  • 13 Murch S J, KrishnaRaj S, Saxena P K. Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St. John’s wort (Hypericum perforatum L. cv. Anthos) plants.  Plant Cell Reports. 2000;  19 698-704
  • 14 Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures.  Physiol Plant. 1962;  15 473-97
  • 15 Gamborg O L, Miller R A, Ojima K. Nutrient requirement of suspension cultures of soybean root cells.  Exp Cell Res. 1968;  50 150-8
  • 16 Liu F F, Ang C YW, Springer D. Optimization of extraction conditions for active components in Hypericum perforatum using response surface methodology.  J Agric Food Chem. 2000;  48 364-71
  • 17 Gray D E, Rottinghaus G E, Garrett H EG, Pallardy G. Simultaneous determination of the predominant hyperforins and hypericins in St. John’s Wort (Hypericum perforatum L.) by liquid chromatography.  J AOAC Inter. 2000;  83 944-9
  • 18 Pourtaraud A, Lobstein A, Girardin P, Weniger B. Improved procedure for the quality control of Hypericum perforatum L.  Phytochem Anal. 2001;  12 355-62
  • 19 Son S H, Paek K Y. Large-scale production of medicinal plant species: The application of bioreactors for production of ginseng roots. In: Development of Plant Based Medicines: Conservation, Efficacy and Safety. P.K. Saxena (Ed.) Kluwer Academic Press 2001: pp 139-50
  • 20 Murch S J, KrishnaRaj S, Saxena P K. Production of medicinal plant species in sterile controlled environments In: Transplant Production in the 21st Century. Kluwer Academic Pres 2000: pp 160-5
  • 21 Hahn E -J, Kin S J, Paek K Y, Lee Y B. Growth and acclimatization of chrysanthemum plantlets using bioreactor and hydroponic culture techniques. Transplant Production in the 21st Century. Kluwer Academic Press 2000: pp 274-8
  • 22 Cooper A. The ABC of NFT: Nutrient Film Technique. Caspar Publications Pty Ltd 1996: pp. xv, 134

Prof. Praveen K. Saxena

Department of Plant Agriculture

Edmund C. Bovey Complex

University of Guelph

Guelph

Ontario

Canada

N1G 2W1

Phone: +1-519-824-4120 ext. 2495

Fax: +1-519-767-0755

Email: psaxena@uoguelph.ca