RSS-Feed abonnieren
DOI: 10.1055/s-2002-36708
Gonadotropinomas
Publikationsverlauf
Publikationsdatum:
21. Januar 2003 (online)
ABSTRACT
Advances in immunocytochemistry, electron microscopy, cell culture, and molecular techniques have demonstrated that 80 to 90% of the clinically nonfunctioning pituitary adenomas are gonadotrope-derived and recently recognized as gonadotropinomas, which account for as many as 40 to 50% of all pituitary macroadenomas. Patients usually present with mass effects including visual field loss and headache, hypogonadism, and hypopituitarism. Commonly, the tumor is found incidentally. Recently, a few patients with gonadotropinomas were reported to have hormonal hypersecretion syndromes such as ovarian hyperstimulation, testicular enlargement, and precocious puberty. The tumors can be divided into two broad categories: functioning gonadotropinomas with positive immunostaining for follicle-stimulating hormone, leutinizing hormone, and/or their subunits; and nonfunctioning gonadotropinomas or null cell tumors with negative immunostaining for all pituitary hormones but positive nuclear immunostaining for steroid factor-1 or DAX-1 characteristic of gonadotrope differentiation, with evidence of gonadotropin production or gene expression at the mRNA level. Gonadotropinomas are monoclonal in origin but the pathogenesis of these tumors is unknown and factors that stimulate clonal proliferation not yet determined. A new pituitary oncogene, pituitary tumor transforming gene, has recently been found to be overexpressed in about two thirds of these tumors but it is also detected in all other pituitary tumor subtypes. Alterations of tumor hormone receptors and local growth factors may also play a role in the tumor development and/or progression. Transphenoidal surgery remains the principal therapy for the macroadenomas. Radiosurgery using gamma knife, the linear accelerator, or proton beam therapy showed promising results, especially for controlling the residual or recurrent tumors. Medical therapy with somatostatin analogs, dopamine agonists, and gonadotropin-releasing hormone agonists and antagonists are rarely effective in reducing tumor size. Experimental therapy with intraoperative local chemotherapy or potential gene therapy requires further investigation.
KEYWORD
Gonadotrope adenoma - gonadotropins - clinically nonfunctioning tumor - null cell adenoma
REFERENCES
- 1 Klibanski A. Nonsecreting pituitary tumors. Endocrinol Metab Clin North Am . 1987; 16 793-804
- 2 Greenman Y, Melmed S. Diagnosis and management of nonfunctioning pituitary tumors. Annu Rev Med . 1996; 47 95-106
- 3 Snyder P J. Gonadotroph and other clinically nonfunctioning pituitary adenomas. Cancer Treat Res . 1997; 89 57-72
- 4 Samuels M H, Ridgway E C. Glycoprotein-secreting pituitary adenomas. Baillieres Clin Endocrinol Metab . 1995; 9 337-358
- 5 Asa S L, Gerrie B M, Singer W. Gonadotropin secretion in vitro by human pituitary null cell adenomas and oncocytomas. J Clin Endocrinol Metab . 1986; 62 1011-1019
- 6 Yamada S, Asa S L, Kovacs K, Muller P, Smyth H S. Analysis of hormone secretion by clinically nonfunctioning human pituitary adenomas using the reverse hemolytic plaque assay. J Clin Endocrinol Metab . 1989; 68 73-80
- 7 Jameson J L, Klibanski A, Black P M. Glycoprotein hormone genes are expressed in clinically nonfunctioning pituitary adenomas. J Clin Invest . 1987; 80 1472-1478
- 8 Daneshdoost L, Gennarelli T A, Bashey H M. Recognition of gonadotroph adenomas in women. N Engl J Med . 1991; 324 589-594
- 9 Kane L A, Leinung M C, Scheithauer B W. Pituitary adenomas in childhood and adolescence. J Clin Endocrinol Metab . 1994; 79 1135-1140
- 10 Klibanski A, Deutsch P J, Jameson J L. Luteinizing hormone-secreting pituitary tumor: biosynthetic characterization and clinical studies. J Clin Endocrinol Metab . 1987; 64 536-542
- 11 Hansen K A, Tho S P, Gomez F, McDonough P G. Nonfunctioning pituitary macroadenoma presenting with mild hyperprolactinemia and amenorrhea. Fertil Steril . 1999; 72 663-665
- 12 Christin-Maitre S, Rongieres-Bertrand C, Kottler M L. A spontaneous and severe hyperstimulation of the ovaries revealing a gonadotroph adenoma. J Clin Endocrinol Metab . 1998; 83 3450-3453
- 13 Djerassi A, Coutifaris C, West V A. Gonadotroph adenoma in a premenopausal woman secreting follicle-stimulating hormone and causing ovarian hyperstimulation. J Clin Endocrinol Metab . 1995; 80 591-594
- 14 Shimon I, Rubinek T, Bar-Hava I. Ovarian hyperstimulation without elevated serum estradiol associated with pure follicle-stimulating hormone-secreting pituitary adenoma. J Clin Endocrinol Metab . 2001; 86 3635-3640
- 15 Tashiro H, Katabuchi H, Ohtake H. A follicle-stimulating hormone-secreting gonadotroph adenoma with ovarian enlargement in a 10-year-old girl. Fertil Steril . 1999; 72 158-160
- 16 Valimaki M J, Tiitinen A, Alfthan H. Ovarian hyperstimulation caused by gonadotroph adenoma secreting follicle-stimulating hormone in 28-year-old woman. J Clin Endocrinol Metab . 1999; 84 4204-4208
- 17 Ambrosi B, Bassetti M, Ferrario R. Precocious puberty in a boy with a PRL-, LH- and FSH-secreting pituitary tumour: hormonal and immunocytochemical studies. Acta Endocrinol (Copenh) . 1990; 122 569-576
- 18 Faggiano M, Criscuolo T, Perrone L, Quarto C, Sinisi A A. Sexual precocity in a boy due to hypersecretion of LH and prolactin by a pituitary adenoma. Acta Endocrinol (Copenh) . 1983; 102 167-172
- 19 Kleinschmidt-DeMasters B K, Lillehei K O. Pathological correlates of pituitary adenomas presenting with apoplexy. Hum Pathol . 1998; 29 1255-1265
- 20 Cook D M, Watkins S, Snyder P J. Gonadotrophin-secreting pituitary adenomas masquerading as primary ovarian failure. Clin Endocrinol (Oxf) . 1986; 25 729-738
- 21 Kwekkeboom D J, de Jong H F, Lamberts S W. Gonadotropin release by clinically nonfunctioning and gonadotroph pituitary adenomas in vivo and in vitro: relation to sex and effects of thyrotropin-releasing hormone, gonadotropin-releasing hormone, and bromocriptine. J Clin Endocrinol Metab . 1989; 68 1128-1135
- 22 Nobels F R, Kwekkeboom D J, Coopmans W. A comparison between the diagnostic value of gonadotropins, alpha-subunit, and chromogranin-A and their response to thyrotropin-releasing hormone in clinically nonfunctioning, alpha-subunit-secreting, and gonadotroph pituitary adenomas. J Clin Endocrinol Metab . 1993; 77 784-789
- 23 Somjen D, Tordjman K, Kohen F. Combined beta FSH and beta LH response to TRH in patients with clinically non-functioning pituitary adenomas. Clin Endocrinol (Oxf) . 1997; 46 555-562
- 24 Daneshdoost L, Gennarelli T A, Bashey H M. Identification of gonadotroph adenomas in men with clinically nonfunctioning adenomas by the luteinizing hormone beta subunit response to thyrotropin-releasing hormone. J Clin Endocrinol Metab . 1993; 77 1352-1355
- 25 Nichols D A, Laws Jr R E, Houser O W, Abboud C F. Comparison of magnetic resonance imaging and computed tomography in the preoperative evaluation of pituitary adenomas. Neurosurgery . 1988; 22 380-385
- 26 Ho D M, Hsu C Y, Ting L T, Chiang H. The clinicopathological characteristics of gonadotroph cell adenoma: a study of 118 cases. Hum Pathol . 1997; 28 905-911
- 27 Horvath E, Kovacs K. Gonadotroph adenomas of the human pituitary-sex-related fine-structural dichotomy: a histologic, immunocytochemical, and electron-microscopic study of 30 tumors. Am J Pathol . 1984; 117 429-440
- 28 Kontogeorgos G, Horvath E, Kovacs K. Sex-linked ultrastructural dichotomy of gonadotroph adenomas of the human pituitary: an electron microscopic analysis of 145 tumors. Ultrastruct Pathol . 1990; 14 475-482
- 29 Saccomanno K, Bassetti M, Lania A. Immunodetection of glycoprotein hormone subunits in nonfunctioning and glycoprotein hormone-secreting pituitary adenomas. J Endocrinol Invest . 1997; 20 59-64
- 30 Aylwin S J, Welch J P, Davey C L. The relationship between steroidogenic factor 1 and DAX-1 expression and in vitro gonadotropin secretion in human pituitary adenomas. J Clin Endocrinol Metab . 2001; 86 2476-2483
- 31 Ikuyama S, Ohe K, Sakai Y. Follicle stimulating hormone-beta subunit gene is expressed in parallel with a transcription factor Ad4BP/SF-1 in human pituitary adenomas. Clin Endocrinol (Oxf) . 1996; 45 187-193
- 32 McDermott M T, Haugen B R, Gordon D F. Reverse transcription polymerase chain reaction analysis of pituitary hormone, Pit-1 and steroidogenic factor-1 messenger RNA expression in pituitary tumors. Pituitary . 1999; 2 217-224
- 33 Asa S L, Cheng Z, Ramyar L. Human pituitary null cell adenomas and oncocytomas in vitro: effects of adenohypophysiotropic hormones and gonadal steroids on hormone secretion and tumor cell morphology. J Clin Endocrinol Metab . 1992; 74 1128-1134
- 34 Alexander J M, Biller B M, Bikkal H. Clinically nonfunctioning pituitary tumors are monoclonal in origin. J Clin Invest . 1990; 86 336-340
- 35 Herman V, Fagin J, Gonsky R, Kovacs K, Melmed S. Clonal origin of pituitary adenomas. J Clin Endocrinol Metab . 1990; 71 1427-1433
- 36 Melmed S. Pathogenesis of pituitary tumors. Endocrinol Metab Clin North Am . 1999; 28 1-12
- 37 Farrell W E, Clayton R N. Molecular pathogenesis of pituitary tumors. Front Neuroendocrinol . 2000; 21 174-198
- 38 Spada A, Lania A, Ballare E. G protein abnormalities in pituitary adenomas. Mol Cell Endocrinol . 1998; 142 1-14
- 39 Heaney A P, Melmed S. New pituitary oncogenes. Endocr Relat Cancer . 2000; 7 3-15
- 40 Zhang X, Horwitz G A, Prezant T R. Structure, expression, and function of human pituitary tumor-transforming gene (PTTG). Mol Endocrinol . 1999; 13 156-166
- 41 Seemann N, Kuhn D, Wrocklage C. CDKN2A/p16 inactivation is related to pituitary adenoma type and size. J Pathol . 2001; 193 491-497
- 42 Takeuchi S, Koeffler H P, Hinton D R. Mutation and expression analysis of the cyclin-dependent kinase inhibitor gene p27/Kip1 in pituitary tumors. J Endocrinol . 1998; 157 337-341
- 43 Zhang X, Horwitz G A, Heaney A P. Pituitary tumor transforming gene (PTTG) expression in pituitary adenomas. J Clin Endocrinol Metab . 1999; 84 761-767
- 44 Atkin S L, Jeffreys R V, Foy P M. Effects of basic fibroblastic growth factor on the function and proliferation of human clinically non-functional pituitary adenomas which secreted glycoprotein hormones in vitro. J Endocrinol . 1995; 144 173-178
- 45 Heaney A P, Horwitz G A, Wang Z, Singson R, Melmed S. Early involvement of estrogen-induced pituitary tumor transforming gene and fibroblast growth factor expression in prolactinoma pathogenesis. Nat Med . 1999; 5 1317-1321
- 46 Ishikawa H, Heaney A P, Yu R, Horwitz G A, Melmed S. Human pituitary tumor-transforming gene induces angiogenesis. J Clin Endocrinol Metab . 2001; 86 867-874
- 47 Alexander J M, Klibanski A. Gonadotropin-releasing hormone receptor mRNA expression by human pituitary tumors in vitro. J Clin Invest . 1994; 93 2332-2339
- 48 Chaidarun S S, Klibanski A, Alexander J M. Tumor-specific expression of alternatively spliced estrogen receptor messenger ribonucleic acid variants in human pituitary adenomas. J Clin Endocrinol Metab . 1997; 82 1058-1065
- 49 D'Abronzo F H, Swearingen B, Klibanski A, Alexander J M. Mutational analysis of activin/transforming growth factor-beta type I and type II receptor kinases in human pituitary tumors. J Clin Endocrinol Metab . 1999; 84 1716-1721
- 50 Chanson P, De Roux N, Young J. Absence of activating mutations in the GnRH receptor gene in human pituitary gonadotroph adenomas. Eur J Endocrinol . 1998; 139 157-160
- 51 Miller G M, Alexander J M, Klibanski A. Gonadotropin-releasing hormone messenger RNA expression in gonadotroph tumors and normal human pituitary. J Clin Endocrinol Metab . 1996; 81 80-83
- 52 Alexander J M, Bikkal H A, Zervas N T, Laws Jr R E, Klibanski A. Tumor-specific expression and alternate splicing of messenger ribonucleic acid encoding activin/transforming growth factor-beta receptors in human pituitary adenomas. J Clin Endocrinol Metab . 1996; 81 783-790
- 53 Chaidarun S S, Eggo M C, Sheppard M C, Stewart P M. Expression of epidermal growth factor (EGF), its receptor, and related oncoprotein (erbB-2) in human pituitary tumors and response to EGF in vitro. Endocrinology . 1994; 135 2012-2021
- 54 Penabad J L, Bashey H M, Asa S L. Decreased follistatin gene expression in gonadotroph adenomas. J Clin Endocrinol Metab . 1996; 81 3397-3403
- 55 Chaidarun S S, Eggo M C, Stewart P M, Barber P C, Sheppard M C. Role of growth factors and estrogen as modulators of growth, differentiation, and expression of gonadotropin subunit genes in primary cultured sheep pituitary cells. Endocrinology . 1994; 134 935-944
- 56 Spady T J, Harvell D M, Snyder M C. Estrogen-induced tumorigenesis in the Copenhagen rat: disparate susceptibilities to development of prolactin-producing pituitary tumors and mammary carcinomas. Cancer Lett . 1998; 124 95-103
- 57 Webb P, Nguyen P, Valentine C. The estrogen receptor enhances AP-1 activity by two distinct mechanisms with different requirements for receptor transactivation functions. Mol Endocrinol . 1999; 13 1672-1685
- 58 Kato S. Estrogen receptor-mediated cross-talk with growth factor signaling pathways. Breast Cancer . 2001; 8 3-9
- 59 Katzenellenbogen B S, Katzenellenbogen J A. Estrogen receptor transcription and transactivation: estrogen receptor alpha and estrogen receptor beta: regulation by selective estrogen receptor modulators and importance in breast cancer. Breast Cancer Res . 2000; 2 335-344
- 60 Nilsson S, Makela S, Treuter E. Mechanisms of estrogen action. Physiol Rev . 2001; 81 1535-1565
- 61 Chaidarun S, Alexander J. Pituitary tumor-specific estrogen receptor splice variants constitutively activate c-fos gene expression and increase cellular proliferation. The Tenth International Congress of Endocrinology, 1997 OR9-1: 75
- 62 Chaidarun S S, Alexander J M. A tumor-specific truncated estrogen receptor splice variant enhances estrogen-stimulated gene expression. Mol Endocrinol . 1998; 12 1355-1366
- 63 Chaidarun S S, Swearingen B, Alexander J M. Differential expression of estrogen receptor-beta (ER beta) in human pituitary tumors: functional interactions with ER alpha and a tumor-specific splice variant. J Clin Endocrinol Metab . 1998; 83 3308-3315
- 64 Ying S Y. Inhibins, activins and follistatins. J Steroid Biochem . 1989; 33 705-713
- 65 Knight P G. Roles of inhibins, activins, and follistatin in the female reproductive system. Front Neuroendocrinol . 1996; 17 476-509
- 66 Blumenfeld Z, Ritter M. Inhibin, activin, and follistatin in human fetal pituitary and gonadal physiology. Ann N Y Acad Sci . 2001; 943 34-48
- 67 Danila D C, Inder W J, Zhang X. Activin effects on neoplastic proliferation of human pituitary tumors. J Clin Endocrinol Metab . 2000; 85 1009-1015
- 68 Zhou Y, Sun H, Danila D C. Truncated activin type I receptor Alk4 isoforms are dominant negative receptors inhibiting activin signaling. Mol Endocrinol . 2000; 14 2066-2075
- 69 Pellegrini-Bouiller I, Manrique C, Gunz G. Expression of the members of the Ptx family of transcription factors in human pituitary adenomas. J Clin Endocrinol Metab . 1999; 84 2212-2220
- 70 Skelly R H, Korbonits M, Grossman A. Expression of the pituitary transcription factor Ptx-1, but not that of the trans-activating factor prop-1, is reduced in human corticotroph adenomas and is associated with decreased alpha-subunit secretion. J Clin Endocrinol Metab . 2000; 85 2537-2542
- 71 Achermann J C, Weiss J, Lee E J, Jameson J L. Inherited disorders of the gonadotropin hormones. Mol Cell Endocrinol . 2001; 179 89-96
- 72 Laws Jr R E, Thapar K. Pituitary surgery. Endocrinol Metab Clin North Am . 1999; 28 119-131
- 73 Black P M, Zervas N T, Candia G. Management of large pituitary adenomas by transsphenoidal surgery. Surg Neurol . 1988; 29 443-447
- 74 Tsang R W, Laperriere N J, Simpson W J. Glioma arising after radiation therapy for pituitary adenoma: a report of four patients and estimation of risk. Cancer . 1993; 72 2227-2233
- 75 Izawa M, Hayashi M, Nakaya K. Gamma knife radiosurgery for pituitary adenomas. J Neurosurg . 2000; 93 (suppl 3) 19-22
- 76 Pollock B E, Gorman D A, Schomberg P J, Kline R W. The Mayo Clinic gamma knife experience: indications and initial results. Mayo Clin Proc . 1999; 74 5-13
- 77 Yamamoto M. Gamma knife radiosurgery: technology, applications, and future directions. Neurosurg Clin N Am . 1999; 10 181-202
- 78 Sims E, Doughty D, Macaulay E. Stereotactically delivered cranial radiation therapy: a ten-year experience of linac-based radiosurgery in the UK. Clin Oncol (R Coll Radiol) . 1999; 11 303-320
- 79 Mitsumori M, Shrieve D C, Alexander III E. Initial clinical results of LINAC-based stereotactic radiosurgery and stereotactic radiotherapy for pituitary adenomas. Int J Radiat Oncol Biol Phys . 1998; 42 573-580
- 80 Raju M R. Proton radiobiology, radiosurgery and radiotherapy. Int J Radiat Biol . 1995; 67 237-259
- 81 Levy R P, Fabrikant J I, Frankel K A. Heavy-charged-particle radiosurgery of the pituitary gland: clinical results of 840 patients. Stereotact Funct Neurosurg . 1991; 57 22-35
- 82 Pai H H, Thornton A, Katznelson L. Hypothalamic/pituitary function following high-dose conformal radiotherapy to the base of skull: demonstration of a dose-effect relationship using dose-volume histogram analysis. Int J Radiat Oncol Biol Phys . 2001; 49 1079-1092
- 83 Rocher F P, Sentenac I, Berger C. Stereotactic radiosurgery: the Lyon experience. Acta Neurochir Suppl (Wien) . 1995; 63 109-114
- 84 Shomali M E, Katznelson L. Medical therapy for gonadotroph and thyrotroph tumors. Endocrinol Metab Clin North Am . 1999; 28 223-240
- 85 Sassolas G, Trouillas J, Treluyer C, Perrin G. Management of nonfunctioning pituitary adenomas. Acta Endocrinol (Copenh) . 1993; 129 (suppl 1) 21-26
- 86 Hofland L J, de Herder W W, Waaijers M. Interferon-alpha-2a is a potent inhibitor of hormone secretion by cultured human pituitary adenomas. J Clin Endocrinol Metab . 1999; 84 3336-3343
- 87 Lee E J, Anderson L M, Thimmapaya B, Jameson J L. Targeted expression of toxic genes directed by pituitary hormone promoters: a potential strategy for adenovirus-mediated gene therapy of pituitary tumors. J Clin Endocrinol Metab . 1999; 84 786-794
- 88 Lee E J, Thimmapaya B, Jameson J L. Stereotactic injection of adenoviral vectors that target gene expression to specific pituitary cell types: implications for gene therapy. Neurosurgery . 2000; 46 1461-1469