RSS-Feed abonnieren
DOI: 10.1055/s-2002-36712
Appetite Control and Reproduction: Leptin and Beyond
Publikationsverlauf
Publikationsdatum:
21. Januar 2003 (online)
ABSTRACT
It is now recognized that appropriate regulation of reproduction, energy intake, and energy expenditure, and thus maintenance of body weight and fertility, relies on complex hypothalamic neurocircuitry. Feeding and reproductive function are closely linked. During times of undernourishment and falling body fat the reproductive axis is down-regulated. Circulating factors and hypothalamic circuits coordinate these responses. Leptin has been described to be an important peripheral signal that indicates body fat stores to the hypothalamus and thus links nutrition and reproduction. Leptin acts by altering neuropeptide circuits in the hypothalamus, which alter gonadotropin-releasing hormone release and food intake. The importance of key neuropeptide systems identified in rodents is now being established in man. Notably mutations in the melanocortin MC4 receptor are found in up to 4% of the morbidly obese, and in a proportion of patients with anorexia nervosa mutations have been identified in the agouti-related peptide gene (AgRP), which codes for an endogenous antagonist of this receptor. Intranasal administration of a melanocortin fragment known to activate the MC4 receptor decreases adiposity in humans. The melanocortin system has been shown to influence the reproductive axis in rodents. However, the role of the melanocortin system in the control of reproduction in humans remains to be established. Since the discovery of leptin, attention has also been focused on peripheral signals that regulate reproduction, food intake, and energy expenditure, either directly or via feedback on hypothalamic circuits. Notable new discoveries in this area include the gastric hormone ghrelin. Circulating ghrelin stimulates food intake in rodents and humans, although an influence on the reproductive axis is yet to be reported.
KEYWORD
Hypothalamus - leptin - melanocortins - ghrelin - food intake
REFERENCES
- 1 Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman J M. Positional cloning of the mouse obese gene and its human homologue. Nature . 1994; 372 425-432
- 2 Considine R V, Sinha M K, Heiman M L. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med . 1996; 334 292-295
- 3 Schwartz M W, Peskind E, Raskind M, Boyko E J, Porte D. Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans. Nat Med . 1996; 2 589-593
- 4 Hoggard N, Mercer J G, Rayner D V, Moar K, Trayhurn P, Williams L M. Localization of leptin receptor mRNA splice variants in murine peripheral tissues by RT-PCR and in situ hybridization. Biochem Biophys Res Commun . 1997; 232 383-387
- 5 Elmquist J K, Bjorbaek C, Ahima R S, Flier J S, Saper C B. Distributions of leptin receptor mRNA isoforms in the rat brain. J Comp Neurol . 1998; 395 535-547
- 6 Baskin D G, Breininger J F, Schwartz M W. Leptin receptor mRNA identifies a subpopulation of neuropeptide Y neurons activated by fasting in rat hypothalamus. Diabetes . 1999; 48 828-833
- 7 Cheung C C, Clifton D K, Steiner R A. Proopiomelanocortin neurons are direct targets for leptin in the hypothalamus. Endocrinology . 1997; 138 4489-4492
- 8 Ghilardi N, Ziegler S, Wiestner A, Stoffel R, Heim M H, Skoda R C. Defective STAT signaling by the leptin receptor in diabetic mice. Proc Natl Acad Sci U S A . 1996; 93 6231-6235
- 9 Farooqi I S, Keogh J M, Kamath S. Partial leptin deficiency and human adiposity. Nature . 2001; 414 34-35
- 10 Farooqi I S, O'Rahilly S. Recent advances in the genetics of severe childhood obesity. Arch Dis Child . 2000; 83 31-34
- 11 Farooqi I S, Jebb S A, Langmack G. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med . 1999; 341 879-884
- 12 Chehab F F, Lim M E, Lu R. Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nat Genet . 1996; 12 318-320
- 13 Sinha Y N, Salocks C B, Vanderlaan W P. Prolactin and growth hormone secretion in chemically induced and genetically obese mice. Endocrinology . 1975; 97 1386-1393
- 14 Lord G, Matarese G, Howard J K, Baker R J, Bloom S R, Lechler R I. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature . 1998; 394 897-901
- 15 Ahima R S, Prabakaran D, Mantzoros C. Role of leptin in the neuroendocrine response to fasting. Nature . 1996; 382 250-252
- 16 Ludwig D S, Mountjoy K G, Tatro J B. Melanin-concentrating hormone: a functional melanocortin antagonist in the hypothalamus. Am J Physiol . 1998; 274 E627-E633
- 17 Cowley M A, Pronchuk N, Fan W, Dinulescu D M, Colmers W F, Cone R D. Integration of NPY, AGRP and melanocortin signals in the hypothalamic paraventricular nucleus: evidence of a cellular basis for the adipostat. Neuron . 2000; 24 155-163
- 18 Badger T M, Lynch E A, Fox P H. Effects of fasting on leutinizing hormone dynamics in the male rat. J Nutr . 1985; 115 788-797
- 19 Yu W H, Kimura M, Walczewska A, Karanth S, McCann S M. Role of leptin in hypothalamic-pituitary function. Proc Natl Acad Sci U S A . 1997; 94 1023-1028
- 20 Kalra S P, Dube M G, Pu S, Xu B, Horvath T L, Kalra P S. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev . 1999; 20 68-100
- 21 Broberger C, Johansen J, Johansson C, Schalling M, Hokfelt T. The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc Natl Acad Sci U S A . 1998; 95 15043-15048
- 22 Kristensen P, Judge M E, Thim L. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature . 1998; 393 72-76
- 23 Schwartz M W, Seeley R J, Woods S C. Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes . 1997; 46 2119-2123
- 24 Stanley B G, Leibowitz S F. Neuropeptide Y injected in the paraventricular hypothalamus: a powerful stimulant of feeding behavior. Proc Natl Acad Sci U S A . 1985; 82 3940-3943
- 25 Stanley B G, Kyrkouli S E, Lampert S, Leibowitz S F. Neuropeptide Y chronically injected into the hypothalamus: a powerful neurochemical inducer of hyperphagia and obesity. Peptides . 1986; 7 1189-1192
- 26 Lambert P D, Phillips P J, Wilding J P, Bloom S R, Herbert J. c-fos expression in the paraventricular nucleus of the hypothalamus following intracerebroventricular infusions of neuropeptide Y. Brain Res . 1995; 670 59-65
- 27 Bagnol D, Lu X Y, Kaelin C B. Anatomy of an endogenous antagonist: relationship between agouti-related protein and proopiomelanocortin in brain. J Neurosci . 1999; 19 RC26
- 28 Stanley B G, Anderson K C, Grayson M H, Leibowitz S F. Repeated hypothalamic stimulation with neuropeptide Y increases daily carbohydrate and fat intake and body weight gain in female rats. Physiol Behav . 1989; 46 173-177
- 29 Sanacora G, Kershaw M, Finkelstein J A, White J D. Increased hypothalamic content of preproneuropeptide Y messenger ribonucleic acid in genetically obese Zucker rats and its regulation by food deprivation. Endocrinology . 1990; 127 730-737
- 30 Nakazato M, Murakami N, Date Y. A role for ghrelin in the central regulation of feeding. Nature . 2001; 409 194-198
- 31 Schwartz M W, Baskin D G, Bukowski T R. Specificity of leptin action on elevated blood glucose levels and hypothalamic neuropeptide Y gene expression in ob/ob mice. Diabetes . 1996; 45 531-535
- 32 Shibasaki T, Oda T, Imaki T, Ling N, Demura H. Injection of anti-neuropeptide Y gamma-globulin into the hypothalamic paraventricular nucleus decreases food intake in rats. Brain Res . 1993; 601 313-316
- 33 Erickson J C, Clegg K E, Palmiter R D. Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature . 1996; 381 415-421
- 34 Erickson J C, Hollopeter G, Palmiter R D. Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y. Science . 1996; 274 1704-1707
- 35 Naveilhan P, Hassani H, Canals J M. Normal feeding behavior, body weight and leptin response require the neuropeptide Y Y2 receptor. Nat Med . 1999; 5 1188-1193
- 36 Billington C J, Briggs J E, Grace M, Levine A S. Effects of intracerebroventricular injection of neuropeptide Y on energy metabolism. Am J Physiol . 1991; 260 R321-R327
- 37 Fekete C, Kelly J, Mihaly E. Neuropeptide Y has a central inhibitory action on the hypothalamic-pituitary-thyroid axis. Endocrinology . 2001; 142 2606-2613
- 38 Li C, Chen P, Smith M S. Morphological evidence for direct interaction between arcuate nucleus neuropeptide Y (NPY) neurons and gonadotropin-releasing hormone neurons and the possible involvement of NPY Y1 receptors. Endocrinology . 1999; 140 5382-5390
- 39 Sahu A, Phelps C P, White J D, Crowley W R, Kalra S P, Kalra P S. Steroidal regulation of hypothalamic neuropeptide Y release and gene expression. Endocrinology . 1992; 130 3331-3336
- 40 Crowley W R, Kalra S P. Neuropeptide Y stimulates the release of luteinizing hormone-releasing hormone from medial basal hypothalamus in vitro: modulation by ovarian hormones. Neuroendocrinology . 1987; 46 97-103
- 41 Kalra S P, Kalra P S, Sahu A, Crowley W R. Gonadal steroids and neurosecretion: facilitatory influence on LHRH and neuropeptide Y. J Steroid Biochem . 1987; 27 677-682
- 42 Kaynard A H, Pau K Y, Hess D L, Spies H G. Third-ventricular infusion of neuropeptide Y suppresses luteinizing hormone secretion in ovariectomized rhesus macaques. Endocrinology . 1990; 127 2437-2444
- 43 Kalra S P, Crowley W R. Neuropeptide Y: a novel neuroendocrine peptide in the control of pituitary hormone secretion, and its relation to luteinizing hormone. Front Neuroendocrinol . 1992; 13 1-46
- 44 Kalra P S, Bonavera J J, Kalra S P. Central administration of antisense oligodeoxynucleotides to neuropeptide Y (NPY) mRNA reveals the critical role of newly synthesized NPY in regulation of LHRH release. Regul Pept . 1995; 59 215-220
- 45 Kalra P S, Dube M G, Kalra S P. Effects of centrally administered antisense oligodeoxynucleotides on feeding behavior and hormone secretion. Methods Enzymol . 2000; 314 184-200
- 46 McDonald J K, Lumpkin M D, Samson W K, McCann S M. Neuropeptide Y affects secretion of luteinizing hormone and growth hormone in ovariectomized rats. Proc Natl Acad Sci U S A . 1985; 82 561-564
- 47 Schulz R, Wilhelm A, Pirke K M, Gramsch C, Herz A. Beta-endorphin and dynorphin control serum luteinizing hormone level in immature female rats. Nature . 1981; 294 757-759
- 48 Kalra S P, Allen L G, Sahu A, Kalra P S, Crowley W R. Gonadal steroids and neuropeptide Y-opioid-LHRH axis: interactions and diversities. J Steroid Biochem . 1988; 30 185-193
- 49 Simonian S X, Spratt D P, Herbison A E. Identification and characterization of estrogen receptor alpha-containing neurons projecting to the vicinity of the gonadotropin-releasing hormone perikarya in the rostral preoptic area of the rat. J Comp Neurol . 1999; 411 346-358
- 50 Faletti A G, Mastronardi C A, Lomniczi A. beta-Endorphin blocks luteinizing hormone-releasing hormone release by inhibiting the nitricoxidergic pathway controlling its release. Proc Natl Acad Sci U S A . 1999; 96 1722-1726
- 51 Walsh J P, Clarke I J. Effects of central administration of highly selective opioid mu-, delta- and kappa-receptor agonists on plasma luteinizing hormone (LH), prolactin, and the estrogen-induced LH surge in ovariectomized ewes. Endocrinology . 1996; 137 3640-3648
- 52 Scimonelli T, Celis M E. Modifications in alpha-MSH concentrations in different hypothalamic areas during the estrous cycle in the rat. Acta Physiol Pharmacol Latinoam . 1986; 36 431-437
- 53 Bohler Jr C H, Tracer H, Merriam G R, Petersen S L. Changes in proopiomelanocortin messenger ribonucleic acid levels in the rostral periarcuate region of the female rat during the estrous cycle. Endocrinology . 1991; 128 1265-1269
- 54 Gosnell B A, Levine A S, Morley J E. The stimulation of food intake by selective agonists of mu, kappa and delta opioid receptors. Life Sci . 1986; 38 1081-1088
- 55 McLean S, Hoebel B G. Feeding induced by opiates injected into the paraventricular hypothalamus. Peptides . 1983; 4 287-292
- 56 Simone D A, Bodnar R J, Goldman E J, Pasternak G W. Involvement of opioid receptor subtypes in rat feeding behavior. Life Sci . 1985; 36 829-833
- 57 Arjune D, Bodnar R J. Suppression of nocturnal, palatable and glucoprivic intake in rats by the kappa opioid antagonist, nor-binaltorphamine. Brain Res . 1990; 534 313-316
- 58 Horvath T L, Naftolin F, Leranth C. Beta-endorphin innervation of dopamine neurons in the rat hypothalamus: a light and electron microscopic double immunostaining study. Endocrinology . 1992; 131 1547-1555
- 59 Kalra P S, Norlin M, Kalra S P. Neuropeptide Y stimulates beta-endorphin release in the basal hypothalamus: role of gonadal steroids. Brain Res . 1995; 705 353-356
- 60 Garcia M M, Brown H E, Harlan R E. Alterations in immediate-early gene proteins in the rat forebrain induced by acute morphine injection. Brain Res . 1995; 692 23-40
- 61 Xu B, Sahu A, Kalra P S, Crowley W R, Kalra S P. Disinhibition from opioid influence augments hypothalamic neuropeptide Y (NPY) gene expression and pituitary luteinizing hormone release: effects of NPY messenger ribonucleic acid antisense oligodeoxynucleotides. Endocrinology . 1996; 137 78-84
- 62 Kandeel F R, Swerdloff R S. The interaction between beta-endorphin and gonadal steroids in regulation of luteinizing hormone (LH) secretion and sex steroid regulation of LH and proopiomelanocortin peptide secretion by individual pituitary cells. Endocrinology . 1997; 138 649-656
- 63 Leranth C, Sakamoto H, MacLusky N J, Shanabrough M, Naftolin F. Application of avidin-ferritin and peroxidase as contrasting electron- dense markers for simultaneous electron microscopic immunocytochemical labelling of glutamic acid decarboxylase and tyrosine hydroxylase in the rat arcuate nucleus. Histochemistry . 1985; 82 165-168
- 64 Jung H, Shannon E M, Fritschy J M, Ojeda S R. Several GABAA receptor subunits are expressed in LHRH neurons of juvenile female rats. Brain Res . 1998; 780 218-229
- 65 McCarthy M M, Kaufman L C, Brooks P J, Pfaff D W, Schwartz-Giblin S. Estrogen modulation of mRNA levels for the two forms of glutamic acid decarboxylase (GAD) in female rat brain. J Comp Neurol . 1995; 360 685-697
- 66 Mitsushima D, Hei D L, Terasawa E. Gamma-aminobutyric acid is an inhibitory neurotransmitter restricting the release of luteinizing hormone-releasing hormone before the onset of puberty. Proc Natl Acad Sci U S A . 1994; 91 395-399
- 67 Gore A C, Roberts J L. Regulation of gonadotropin-releasing hormone gene expression in vivo and in vitro. Front Neuroendocrinol . 1997; 18 209-245
- 68 Mitsushima D, Marzban F, Luchansky L L. Role of glutamic acid decarboxylase in the prepubertal inhibition of the luteinizing hormone releasing hormone release in female rhesus monkeys. J Neurosci . 1996; 16 2563-2573
- 69 Turton M D, O'Shea D, Gunn I. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature . 1996; 379 69-72
- 70 Tang-Christensen M, Larsen P J, Thulesen J, Romer J, Vrang N. The proglucagon-derived peptide, glucagon-like peptide-2, is a neurotransmitter involved in the regulation of food intake. Nat Med . 2000; 6 802-807
- 71 Dakin C L, Gunn I, Small C J. Oxyntomodulin inhibits food intake in the rat. Endocrinology . 2001; 142 4244-4250
- 72 Scrocchi L A, Brown T J, MacLusky N J. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat Med . 1996; 2 1254-1258
- 73 Beak S A, Heath M M, Small C J. Glucagon-like peptide-1 stimulates luteinizing hormone-releasing hormone secretion in a rodent hypothalamic neuronal cell line. J Clin Invest . 1998; 101 1334-1341
- 74 MacLusky N J, Cook S, Scrocchi L. Neuroendocrine function and response to stress in mice with complete disruption of glucagon-like peptide-1 receptor signaling. Endocrinology . 2000; 141 752-762
- 75 Boston B A, Blaydon K M, Varnerin J, Cone R D. Independent and additive effects of central POMC and leptin pathways on murine obesity. Science . 1997; 278 1641-1644
- 76 Barsh G. From Agouti to Pomc: 100 years of fat blonde mice. Nat Med . 1999; 5 984-985
- 77 Cone R D. The central melanocortin system and its role in energy homeostasis. Ann Endocrinol (Paris) . 1999; 60 3-9
- 78 Rossi M, Kim M S, Morgan D G. A C-terminal fragment of Agouti-related protein increases feeding and antagonizes the effect of alpha-melanocyte stimulating hormone in vivo. Endocrinology . 1998; 139 4428-4431
- 79 Quillan J M, Sadee W, Wei E T, Jimenez C, Ji L, Chang J K. A synthetic human Agouti-related protein-(83-132)-NH2 fragment is a potent inhibitor of melanocortin receptor function. FEBS Lett . 1998; 428 59-62
- 80 Fan W, Boston B A, Kesterson R A, Hruby V J, Cone R D. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature . 1997; 385 165-168
- 81 Small C J, Kim M S, Stanley S A. Effects of chronic central nervous system administration of agouti-related protein in pair-fed animals. Diabetes . 2001; 50 248-254
- 82 Huszar D, Lynch C A, Fairchild-Huntress V. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell . 1997; 88 131-141
- 83 Graham M, Shutter J R, Sarmiento U, Sarosi I, Stark K L. Overexpression of Agrt leads to obesity in transgenic mice. Nat Genet . 1997; 17 273-274
- 84 Yaswen L, Diehl N, Brennan M B, Hochgeschwender U. Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin [see comments]. Nat Med . 1999; 5 1066-1070
- 85 Ste-Marie L, Miura G I, Marsh D J, Yagaloff K, Palmiter R D. A metabolic defect promotes obesity in mice lacking melanocortin-4 receptors. Proc Natl Acad Sci U S A . 2000; 97 12339-12344
- 86 Butler A A, Kesterson R A, Khong K. A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology . 2000; 141 3518-3521
- 87 Kim M S, Small C J, Stanley S A. The central melanocortin system affects the hypothalamo-pituitary thyroid axis and may mediate the effect of leptin. J Clin Invest . 2000; 105 1005-1011
- 88 Forbes S, Bui S, Robinson B R, Hochgeschwender U, Brennan M B. Integrated control of appetite and fat metabolism by the leptin-proopiomelanocortin pathway. Proc Natl Acad Sci U S A . 2001; 98 4233-4237
- 89 Blake N G, Eckland D J, Foster O J, Lightman S L. Inhibition of hypothalamic thyrotropin-releasing hormone messenger ribonucleic acid during food deprivation. Endocrinology . 1991; 129 2714-2718
- 90 Jackson R S, O'Rahilly S, Brain C, Nussey S S. Proopiomelanocortin products and human early-onset obesity. J Clin Endocrinol Metab . 1999; 84 819-820
- 91 Yeo G S, Farooqi I S, Challis B G, Jackson I J, O'Rahilly S. The role of melanocortin signalling in the control of body weight: evidence from human and murine genetic models. Q J Med . 2000; 93 7-14
- 92 Vaisse C, Clement K, Durand E, Hercberg S, Guy-Grand B, Froguel P. Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J Clin Invest . 2000; 106 253-262
- 93 Vink T, Hinney A, van Elburg A A. Association between an agouti-related protein gene polymorphism and anorexia nervosa. Mol Psychiatry . 2001; 6 325-328
- 94 Fehm H L, Smolnik R, Kern W, McGregor G P, Bickel U, Born J. The melanocortin melanocyte-stimulating hormone/adrenocorticotropin(4-10) decreases body fat in humans. J Clin Endocrinol Metab . 2001; 86 1144-1148
- 95 Mountjoy K G, Mortrud M T, Low M J, Simerly R B, Cone R D. Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol Endocrinol . 1994; 8 1298-1308
- 96 Williams G, Cardoso H M, Lee Y C. Hypothalamic regulatory peptides in obese and lean Zucker rats. Clin Sci (Lond) . 1991; 80 419-426
- 97 Mezey E, Kiss J Z, Mueller G P, Eskay R, O'Donohue H L, Palkovits M. Distribution of the pro-opiomelanocortin derived peptides, adrenocorticotrope hormone, alpha-melanocyte-stimulating hormone and beta-endorphin (ACTH, alpha-MSH, beta-END) in the rat hypothalamus. Brain Res . 1985; 328 341-347
- 98 Stanley S A, Small C J, Kim M S. Agouti related peptide (Agrp) stimulates the hypothalamo pituitary gonadal axis in vivo & in vitro in male rats. Endocrinology . 1999; 140 5459-5462
- 99 Watanobe H, Suda T, Wikberg J E, Schioth H B. Evidence that physiological levels of circulating leptin exert a stimulatory effect on luteinizing hormone and prolactin surges in rats. Biochem Biophys Res Commun . 1999; 263 162-165
- 100 Limone P, Calvelli P, Altare F, Ajmone-Catt P, Lima T, Molinatti G M. Evidence for an interaction between alpha-MSH and opioids in the regulation of gonadotropin secretion in man. J Endocrinol Invest . 1997; 20 207-210
- 101 Granholm N H, Jeppesen K W, Japs R A. Progressive infertility in female lethal yellow mice (Ay/a; strain C57BL/6J). J Reprod Fertil . 1986; 76 279-287
- 102 Lambert P D, Couceyro P R, McGirr K M, Dall Vechia E S, Smith Y, Kuhar M J. CART peptides in the central control of feeding and interactions with neuropeptide Y. Synapse . 1998; 29 293-298
- 103 Stanley S A, Small C J, Murphy K G. Actions of cocaine- and amphetamine-regulated transcript (CART) peptide on regulation of appetite and hypothalamo-pituitary axes in vitro and in vivo in male rats. Brain Res . 2001; 893 186-194
- 104 Abbott C R, Rossi M, Wren A M. Evidence of an orexigenic role for cocaine- and amphetamine-regulated transcript after administration into discrete hypothalamic nuclei. Endocrinology . 2001; 142 3457-3463
- 105 Koylu E O, Couceyro P R, Lambert P D, Ling N C, DeSouza E B, Kuhar M J. Immunohistochemical localization of novel CART peptides in rat hypothalamus, pituitary and adrenal gland. J Neuroendocrinol . 1997; 9 823-833
- 106 Kojima M, Hosoda H, Matsuo H, Kangawa K. Ghrelin: discovery of the natural endogenous ligand for the growth hormone secretagogue receptor. Trends Endocrinol Metab . 2001; 12 118-122
- 107 Tschop M, Smiley D L, Heiman M L. Ghrelin induces adiposity in rodents. Nature . 2000; 407 908-913
- 108 Wren A M, Small C J, Ward H L. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology . 2000; 141 4325-4328
- 109 Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature . 1999; 402 656-660
- 110 Wren A M, Seal L J, Cohen M A. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab . 2001; 86 5992
- 111 Cummings D E, Purnell J Q, Frayo R S, Schmidova K, Wisse B E, Weigle D S. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes . 2001; 50 1714-1719
- 112 Wren A M, Small C J, Abbott C R. Ghrelin causes hyperphagia and obesity in rats. Diabetes . 2001; 50 2540-2547
- 113 Tschop M, Weyer C, Tataranni P A, Devanarayan V, Ravussin E, Heiman M L. Circulating ghrelin levels are decreased in human obesity. Diabetes . 2001; 50 707-709
- 114 Ravussin E, Tschop M, Morales S, Bouchard C, Heiman M L. Plasma ghrelin concentration and energy balance: overfeeding and negative energy balance studies in twins. J Clin Endocrinol Metab . 2001; 86 4547-4551
- 115 Ariyasu H, Takaya K, Tagami T. Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans. J Clin Endocrinol Metab . 2001; 86 4753-4758
- 116 Kaji H, Tai S, Okimura Y. Cloning and characterization of the 5′-flanking region of the human growth hormone secretagogue receptor gene. J Biol Chem . 1998; 273 33885-33888
- 117 Asakawa A, Inui A, Kaga T. Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. Gastroenterology . 2001; 120 337-345
- 118 Kamegai J, Tamura H, Shimizu T, Ishii S, Sugihara H, Wakabayashi I. Central effect of ghrelin, an endogenous growth hormone secretagogue, on hypothalamic peptide gene expression. Endocrinology . 2000; 141 4797-4800