RSS-Feed abonnieren
DOI: 10.1055/s-2002-36741
Georg Thieme Verlag Stuttgart · New York
White Matter Disease in Cerebral Organic Acid Disorders: Clinical Implications and Suggested Pathomechanisms
Publikationsverlauf
Received: 11 April 2002
Accepted after Revision: 26 July 2002
Publikationsdatum:
21. Januar 2003 (online)
Abstract
White matter abnormalities (including dys-, hypo-, demyelination and delayed myelation) are frequently found in cerebral organic acid disorders, a recently delineated subgroup of inherited organic acid disorders presenting predominantly with a neurological symptomatology. Biochemically, this disease subgroup lacks metabolic derangements, such as hypoglycemia, hyperammonemia and acidosis, and is characterized by an accumulation of organic acids that share structural similarities with the excitatory amino acid glutamate (D-2-, L-2-, 3-hydroxyglutarate, glutarate) or have been suggested as neurotransmitters/neuromodulators (N-acetylaspartylglutamate). Evidence from in vitro and in vivo studies is growing that relevant organic acids significantly contribute to the neuropathology of these diseases via interference with glutamatergic or GABAergic neurotransmission or impairment of energy metabolism. This article provides an overview on the clinical and neuroradiological presentation of white matter disease in cerebral organic acid disorders, focusing on the suggested pathomechanistic relevance of excitotoxicity, oxidative stress, and impaired energy metabolism.
Key words
Organic Acid Disorders - Myelination - Leukencephalopathy - Excitotoxicity - Glutamate Receptors - Reactive Oxygen Species
References
-
1 Adachi M, Aronson S M.
Studies on spongy degeneration of the central nervous system (van Bogaert-Bertrand type). Aronson SM, Volk BW Inborn Disorders of Sphingolipid Metabolism. Oxford; Pergamon Press 1967: 129 - 2 Albin R L, Greenamyre J T. Alternative excitotoxic hypothesis. Neurology. 1992; 42 733-738
- 3 Back S A, Gan X, Li Y, Rosenberg P A, Volpe J J. Maturation-dependent vulnerability of oligodendrocytes to oxidative stress-induced death caused by glutathione depletion. J Neurosci. 1998; 18 6241-6253
- 4 Barres B A, Raff M C, Gaese F, Bartke I, Dechant G, Barde Y A. A crucial role for neurotrophin-3 in oligodendrocyte development. Nature. 1994; 367 371-375
- 5 Barth P G, Hoffmann G F, Jaeken J, Wanders R JA, Duran M, Jansen G A. et al . L-2-Hydroxyglutaric acidaemia: clinical and biochemical findings in 12 patients and preliminary report on L-2-hydroxyacid dehydrogenase. J Inherit Metab Dis. 1993; 16 753-761
- 6 Beal M F, Brouillet E, Jenkins B G, Ferrante R J, Kowall N W, Miller J M. et al . Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci. 1993; 13 4181-4192
-
7 Beaudet A L.
Aspartoacylase deficiency (Canavan disease). Scriver CR, Beaudet AL, Valle AD, Sly WS The Metabolic and Molecular Bases of Inherited Disease. New York; McGraw-Hill 2001: 5799-5805 - 8 Brismar J, Brismar G, Gascon G, Ozand P. Canavan disease: CT and MR imaging of the brain. Am J Neuroradiol. 1990; 11 805-810
- 9 Brismar J, Ozand P T. CT and MR of the brain in glutaric acidemia type I: a review of 59 published cases and a report of 5 new patients. Am J Neuroradiol. 1995; 16 675-683
- 10 Burlina A P, Ferrari V, Divry P, Gradowska W, Jakobs C, Bennett M J. et al . N-Acetylaspartylglutamate in Canavan disease: an adverse effector?. Eur J Pediatr. 1999; 158 406-409
- 11 Chew L J, Fleck M W, Wright P, Scherer S E, Mayer M L, Gallo V. Growth factor-induced transcription of GluR1 increases functional AMPA receptor density in glial progenitor cells. J Neurosci. 1997; 17 227-240
- 12 Chow C W, Haan E A, Goodman S I, Anderson R M, Evans W A, Kleinschmidt-DeMasters B K. et al . Neuropathology of glutaryl-CoA dehydrogenase deficiency. Acta Neuropathol. ; 76 590-594
- 13 Da Silva C G, Ribeiro C AJ, Leipnitz G, Dutra-Filho C S, Wyse A TS, Wannmacher C MD. et al . Inhibition of cytochrome c oxidase activity in rat cerebral cortex and human skeletal muscle by D-2-hydroxyglutaric acid in vitro. Biochim Biophys Acta. 2002; 1586 81-91
- 14 De Mello C F, Kölker S, Ahlemeyer B, de Souza F R, Fighera M R, Mayatepek E. et al . Intrastriatal administration of 3-hydroxyglutaric acid induces convulsions and excitotoxic lesions in rats. Brain Res. 2001; 916 70-75
- 15 D'Incerti L, Farina L, Moroni I, Uziel G, Savoiardi M. L-2-Hydroxyglutaric aciduria: MRI in seven cases. Neuroradiology. 1998; 40 727-733
- 16 Dugan L L, Sensi S L, Canzoniero L M, Handran S D, Rothman S M, Lin T S. et al . Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J Neurosci. 1995; 15 6377-6388
- 17 Follett P L, Rosenberg P A, Volpe J J, Jensen F E. NBQX attenuates excitotoxic injury in developing white matter. J Neurosci. 2000; 20 9235-9241
- 18 Gallo V, Wright P W, McKinnon R D. Expression and regulation of a glutamate receptor subunit by bFGF in oligodendrocyte progenitors. Glia. 1994; 10 149-153
- 19 Gegelashvili G, Schousboe A. High affinity glutamate transporters: regulation of expression and activity. Mol Pharmacol. 1997; 52 5-15
- 20 Greene J G, Porter R HP, Eller R V, Greenamyre J T. Inhibition of succinate dehydrogenase by malonic acid produces an excitotoxic lesion in rat striatum. J Neurochem. 1993; 61 1151-1154
- 21 Hanefeld F, Kruse B, Bruhn H, Frahm J. In vivo proton magnetic resonance spectroscopy of the brain in a patient with L-2-hydroxyglutaric aciduria. Pediatr Res. 1994; 35 614-616
- 22 Hardy R, Reynolds R J. Neuron-oligodendroglial interactions during central nervous system development. Neurosci Res. 1993; 36 121-126
- 23 Heyes M P. Hypothesis: a role for quinolinic acid in the neuropathology of glutaric aciduria type I. Can J Neurol Sci. 1987; 14 441-443
- 24 Hoffmann G F, Trefz F K, Barth P, Böhles J H, Biggemann B, Bremer H J. et al . Glutaryl-CoA deficiency: a distinct encephalopathy. Pediatrics. 1991; 88 1194-1203
- 25 Hoffmann G F, Gibson K M, Trefz F K, Nyhan W L, Bremer H J, Rating D. Neurological manifestations of organic acid disorders. Eur J Ped. 1994; 153 (Suppl 1) S94-100
- 26 Hoffmann G F, Athanassopoulos S, Burlina A B, Duran M, deKlerck J BC, Lehnert W. et al . Clinical course, early diagnosis, treatment, and prevention of disease in glutaryl-CoA dehydrogenase deficiency. Neuropediatrics. 1996; 27 115-123
- 27 Jacobson M. Developmental Neurobiology. 3rd ed. New York; Plenum Press 1991: 776
- 28 Kagawa T, Wada T, Ikenaka K. Regulation of oligodendrocyte development. Microsc Res Tech. 2001; 52 740-745
- 29 Kavanaugh B, Beesley J, Itoh T, Itoh A, Grinspan J, Pleasure D. Neurotrophin-3 (NT-3) diminishes susceptibility of the oligodendroglial lineage to AMPA glutamate receptor-mediated excitotoxicity. J Neurosci Res. 2000; 60 725-732
- 30 Koeller D M, Woontner M, Crnic L S, Kleinschmidt-DeMasters B, Stephens J, Hunt E L, Goodmann S I. Biochemical, pathological and behavioral analysis of a mouse model of glutaric aciduria type I. Hum Mol Gen. 2002; 11 347-357
- 31 Kölker S, Ahlemeyer B, Krieglstein J, Hoffmann G F. Maturation-dependent neurotoxicity of 3-hydroxyglutaric and glutaric acids in vitro: A new pathophysiological approach to glutaryl-CoA dehydrogenase deficiency. Pediatr Res. 2000; 47 495-503
- 32 Kölker S, Ahlemeyer B, Hühne R, Krieglstein J, Hoffmann G F. Potentiation of 3-hydroxyglutarate neurotoxicity following induction of astrocytic iNOS in neonatal rat hippocampal cultures. Eur J Neurosci. 2001; 13 2115-2122
- 33 Kölker S, Ahlemeyer B, Krieglstein J, Hoffmann G F. Contribution of reactive oxygen species to 3-hydroxyglutarate neurotoxicity in primary neuronal cultures from chick embryo telencephalons. Pediatr Res. 2001; 50 76-82
-
34 Kölker S, Okun J G, Hörster F, Ahlemeyer B, Krieglstein J, Mayatepek E, Hoffmann G F.
L-2-Hydroxyglutarazidurie: Evaluation exzitotoxischer Pathomechanismen. Aksu F Aktuelle Neuropädiatrie 2001. Nürnberg; Novartis-Pharma Verlag 2002: 258-261 - 35 Kölker S, Okun J G, Ahlemeyer B, Wyse A T, Hörster F, Kohlmüller D. et al . Chronic treatment with glutaric acid induces partial tolerance to excitotoxicity in neuronal cultures from chick embryo telencephalon. J Neurosci Res. 2002; 68 424-432
- 36 Kölker S, Pawlak V, Ahlemeyer B, Okun J G, Hörster F, Mayatepek E. et al . NMDA receptor activation and respiratory chain complex V inhibition contribute to neurodegeneration in D-2-hydroxyglutaric aciduria. Eur J Neurosci. 2002; 16 21-28
- 37 Kramer E M, Schardt A, Nave K A. Membrane traffic in myelinating oligodendrocytes. Microsc Res Tech. 2001; 52 656-671
- 38 Levine S M, Goldman J E. Spatial and temporal patterns of oligodendrocyte differentiation in rat cerebrum and cerebellum. J Comp Neurol. 1988; 277 441-455
- 39 Li C, Tropak, Gerlai R, Clapoff S, Abramow-Newerly W, Trapp B. et al . Myelination in the absence of myelin-associated glycoprotein. Nature. 1994; 369 747-750
- 40 Lima T TF, Begnini J, de Bastiani J, Fialho D B, Jurach A, Pereira Ribeiro M C. et al . Pharmacological evidence for GABAergic and glutamatergic involvement in the convulsant and behavioral effects of glutaric acids. Brain Res. 1998; 802 55-60
- 41 Lipton S A, Rosenberg P A. Excitatory amino acids as a final common pathway for neurologic disorders. New Engl J Med. 1994; 330 613-622
- 42 Lucas D R, Newhouse J P. The toxic effect of sodium L-glutamate on the inner layers on the retina. Arch Ophthalmol. 1957; 58 193-201
- 43 Matalon R, Michals K, Sebesta D, Deanching M, Gashkoff P, Casanova J. Aspartoacylase deficiency and N-acetylaspartic aciduria in patients with Canavan disease. Am J Med Genet. 1988; 29 463-471
- 44 Matalon R, Michals K, Kaul R. Canavan disease: from spongy degeneration to molecular analysis. J Pediatr. 1995; 127 511-517
- 45 Matalon R, Rady P L, Platt K A, Skinner H B, Quast M J, Campbell G A. et al . Knock-out mouse for Canavan disease: a model for gene transfer to the central nervous system. J Gene Med. 2000; 2 165-175
- 46 Matute C, Sanchez-Gomez M V, Martinez-Millan L, Miledi R. Glutamate-mediated toxicity in optic nerve oligodendrocytes. Proc Natl Acad Sci. 1997; 94 8830-8835
- 47 McDonald J W, Althomsons S P, Hyrc K L, Choi D W, Goldberg M P. Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor-mediated excitotoxicity. Nat Med. 1998; 4 291-297
- 48 McKinnon R D, Matsui T, Dubois-Dalq M, Aaronson S A. FGF modulates the PDGF-driven pathway of oligodendrocyte development. Neuron. 1990; 5 603-614
-
49 Morell P, Quarles R H, Norton W T.
Myelin formation, structure, and biochemistry. Siegel GF Basic Neurochemistry: Molecular, Cellular, and Medical Aspects. 5th ed. New York; Raven Press 1994: 117-143 - 50 Muntau A C, Röschinger W, Merkenschlager A, van der Knaap M S, Jakobs C, Duran M. et al . Combined D-2- and L-2-hydroxyglutaric aciduria with neonatal onset encephalopathy: a third biochemical variant of 2-hydroxyglutaric aciduria?. Neuropediatrics. 2000; 31 137-140
- 51 Neale J H, Bzdega T, Wroblewska B. N-Acetylaspartylglutamate: the most abundant peptide neurotransmitter in the mammalian central nervous system. J Neurochem. 2000; 75 443-452
- 52 Nyhan W L, Shelton D, Jakobs C, Holmes B, Bowe C, Curry C JR. et al . D-2-hydroxyglutaric aciduria. J Child Neurol. 1995; 10 137-142
- 53 Olney J W. Brain lesion, obesity and other disturbances in mice treated with monsodium glutamate. Science. 1969; 164 719-721
- 54 Passani L, Elkabes S, Coyle J T. Evidence for the presence of N-acetylaspartylglutamate in cultured oligodendrocytes and LPS activated microglia. Brain Res. 1998; 25 143-145
- 55 Patneau D K, Wright P W, Winters C, Mayer M L, Gallo V. Glial cells of the oligodendrocyte lineage express both kainate- and AMPA-preferring subtypes of glutamate receptor. Neuron. 1994; 12 357-371
- 56 Pende M, Holtzclaw L A, Curtis J L, Russell J T, Gallo V. Glutamate regulates intracellular calcium and gene expression in oligodendrocyte progenitors through the activation of DL-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Proc Natl Acad Sci. 1994; 91 3215-3219
- 57 Pliss L, Fitz-Gibbon T, Balcar V J, Stasny F. Neurotoxicity of NAAG in vivo is sensitive to NMDA antagonists and mGluR II ligands. Neuroreport. 2000; 11 3651-3654
- 58 Puchalski R B, Louis J C, Brose N, Traynelis S F, Egebjerg J, Kukekov V. et al . Selective RNA editing and subunit assembly of native glutamate receptors. Neuron. 1994; 13 131-146
- 59 Quarles R H. Glycoproteins of myelin sheats. J Mol Neurosci. 1997; 8 1-12
- 60 Raff M C, Lillien L E, Richardson W D, Burne J F, Noble M D. Platelet-derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture. Nature. 1988; 303 390-396
- 61 Toft P B, Geiß-Holtorff R, Rolland M O, Pryds O, Müller-Forell W, Christensen E. et al . Magnetic resonance imaging in juvenile Canavan disease. Eur J Pediatr. 1993; 152 750-753
- 62 Ullrich K, Flott-Rahmel B, Schluff P, Musshoff U, Das A, Lücke T. et al . Glutaric aciduria type I: Pathomechanism of neurodegeneration. J Inherit Metab Dis. 1999; 22 392-403
- 63 Valivullah H M, Lancaster J, Sweetman P M, Neale J H. Interactions between N-acetylaspartylglutamate and AMPA, kainate, and NMDA binding sites. J Neurochem. 1994; 63 1714-1719
- 64 Van der Knaap M S, Valk J. Magnetic Resonance of Myelin, Myelination, and Myelin Disorders. 2nd ed. Berlin, Heidelberg, New York; Springer 1995
- 65 Van der Knaap M S, Jakobs C, Hoffmann G F, Nyhan W L, Renier W O, Smeitink J AM. et al . D-2-hydroxyglutaric aciduria: biochemical marker or clinical disease entity?. Ann Neurol. 1999; 45 111-119
- 66 Yonezawa M, Back S A, Gan X, Rosenberg P A, Volpe J J. Cystine deprivation induces oligodendroglial death: rescue by free radical scavengers and by a diffusible glial factor. J Neurochem. 1996; 67 566-573
Prof. Dr. Georg F. Hoffmann
Department of General Pediatrics
University Children's Hospital Heidelberg
Im Neuenheimer Feld 150
69120 Heidelberg
Germany
eMail: Georg_Hoffmann@med.uni-heidelberg.de