Horm Metab Res 2002; 34(11/12): 607-615
DOI: 10.1055/s-2002-38245
Review
© Georg Thieme Verlag Stuttgart · New York

Completing the Loop: Neuron-Adipocyte Interactions and the Control of Energy Homeostasis

L.  C.  Turtzo1 , M.  D.  Lane1
  • 1Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Weitere Informationen

Publikationsverlauf

Received 7 October 2002

Accepted after revision 19 November 2002

Publikationsdatum:
27. März 2003 (online)

Abstract

Control of energy homeostasis requires communication between the brain and adipose tissue. The sympathetic nervous system plays an integral role in relaying information during this process. Recent investigations indicate that the contributions of the sympathetic nervous system to the regulation of adipose tissue are greater than initially appreciated. A recently developed co-culture system provides evidence that a local feedback loop may exist between sympathetic neurons and adipose tissue. The co-culture approach may prove useful in further investigations of the interaction between sympathetic neurons and adipocytes, and might be adapted to study interactions between other types of neurons and adipose tissue.

References

  • 1 Pi-Sunyer F X. Medical hazards of obesity.  Ann Int Med. 1993;  119 655-660
  • 2 Kopelman P G. Obesity as a medical problem.  Nature. 2000;  404 635-643
  • 3 Matsuzawa Y. Pathophysiology and molecular mechanisms of visceral fat syndrome: the Japanese experience.  Diab/Met Rev. 1997;  13 (1) 3-13
  • 4 Kopelman P G, Albon L. Obesity, non-insulin-dependent diabetes and the metabolic syndrome.  Br Med J. 1997;  53 322-340
  • 5 Reaven G M. Role of insulin resistance in human disease.  Diabetes. 1988;  37 1595-1607
  • 6 Kaplan N M. The deadly quartet.  Arch Int Med. 1989;  149 1514-1520
  • 7 Steinberg D. Regulation of lipid and lipoprotein metabolism. In: West JB (ed) Best and Taylor’s Physiological Basis of Medical Practice. Baltimore; Williams and Wilkins 1990: 741-753
  • 8 Hausberger F X, Widelitz M M. Distribution of labeled erythrocytes in adipose tissue and muscle in the rat.  Am J Phys. 1963;  204 (4) 649-652
  • 9 Afzelius B A. Brown adipose tissue: its gross anatomy, histology, and cytology. In: Lindberg O (ed) Brown Adipose Tissue. New York; American Elsevier Publishing Company Inc 1970: 1-31
  • 10 Crandall D L, Hausman G J, Kral J G. A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives.  Microcirc. 1997;  4 (2) 211-232
  • 11 Niijima A. Nervous regulation of metabolism.  Prog Neuro. 1989;  33 135-147
  • 12 Strosberg A D. Structure, function, and regulation of the three β-adrenergic receptors.  Ob Res. 1995;  3 (4) 501S-505S
  • 13 Carpéné C, Ambid L, Lafontan M. Predominance of β3-adrenergic component in catecholamine activation of lipolysis in garden dormouse adipocytes.  Am J Phys. 1994;  266 (35) R896-R904
  • 14 Grujic D. et al . β3-adrenergic receptors on white and brown adipocytes mediate β3-selective agonist-induced effects on energy expenditure, insulin secretion, and food intake.  J Biol Chem. 1997;  272 (28) 17 686-17 693
  • 15 Ringer E, Russ U, Siemen S. β3-adrenergic stimulation and insulin inhibition of non-selective cation channels in white adipocytes of the rat.  Biochim Biophys Acta. 2000;  1463 241-253
  • 16 Lafontan M. et al . Adrenergic receptors and fat cells: differential recruitment by physiological amines and homologous recombination.  Ob Res. 1995;  3 507S-514S
  • 17 Robidoux J. et al . Site-specific effects of sympathectomy on the adrenergic control of lipolysis in hamster fat cells.  Can J Phys Pharm. 1995;  73 (4) 450-458
  • 18 Rebuffé-Scrive M. Neuroregulation of adipose tissue: molecular and hormonal mechanisms.  Int J Ob. 1991;  15 83-86
  • 19 Maeda K. et al . Analysis of an expression profile of genes in the human adipose tissue.  Gene. 1997;  190 227-235
  • 20 Shuldiner A R, Yang R, Gong D W. Resistin, obesity, and insulin resistance - the emerging role of the adipocyte as an endodrine organ.  N Engl J Med. 2001;  345 (18) 1345-1346
  • 21 Trayhurn P, Beattie J H. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ.  Proc Nutr Soc. 2001;  60 (3) 329-339
  • 22 White R T. et al . Human adipsin is identical to complement factor D and is expressed at high levels in adipose tissue.  J Biol Chem. 1992;  267 (13) 9210-9213
  • 23 Hotamisligil G S. et al . Increased adipose tissue expression of tumor necrosis factor-α in human obesity and insulin resistance.  J Clin Inv. 1995;  95 (5) 2409-2415
  • 24 Zhang Y. et al . Positional cloning of the mouse obese gene and its human homologue.  Nature. 1994;  372 425-432
  • 25 Kennedy G C. The role of depot fat in the hypothalamic control of food intake in the rat.  Proc Roy Soc London B. 1953;  140 578-592
  • 26 Mauer M M, Harris R BS, Bartness T J. The regulation of total body fat: lessons learned from lipectomy studies.  Neurosci Bio Rev. 2001;  25 15-28
  • 27 Hervey G R. Regulation of energy balance.  Nature. 1969;  222 629-631
  • 28 Bray G A, York D A. Hypothalamic and genetic obesity in experimental animals: an autonomic and endocrine hypothesis.  J Phys. 1979;  377 1-13
  • 29 Keesey R E. Physiological regulation of body weight and the issue of obesity.  Med Clin N Am. 1989;  73 (1) 15-27
  • 30 Maffei M. et al . Increased expression in adipocytes of ob RNA in mice with lesions of the hypothalamus and with mutations at the db locus.  Proc Natl Acad Sci USA. 1995;  92 6950-6957
  • 31 Laharrague P. et al . High expression of leptin by human bone marrow adipocytes in primary culture.  FASEB J. 1998;  12 747-752
  • 32 Bado A. et al . The stomach is a source of leptin.  Nature. 1998;  394 790-793
  • 33 Holness M J. et al . Current concepts concerning the role of leptin in reproductive function.  Mol Cell Endocrinol. 1999;  157 11-20
  • 34 Bi S. et al . Identification of a placental enhancer for the human leptin gene.  J Biol Chem. 1997;  272 30 583-30 588
  • 35 Wang J. et al . A nutrient-sensing pathway regulates leptin gene expression in muscle and fat.  Nature. 1998;  393 684-688
  • 36 Wang J. et al . The effect of leptin on Lep expression is tissue-specific and nutritionally regulated.  Nature Med. 1999;  5 895-899.
  • 37 Considine R V. Regulation of leptin production.  Rev Endocr Metab Disord. 2001;  2 357-363
  • 38 Campfield L A. et al . Recombinant mouse ob protein: evidence for a peripheral signal linking adiposity and central neural networks.  Science. 1995 ;  269 546-549
  • 39 Halaas J L. et al . Weight-reducing effects of the plasma protein encoded by the obese gene.  Science. 1995;  269 543-546
  • 40 Pelleymounter M A. et al . Effects of the obese gene product on body weight regulation in ob/ob mice.  Science. 1995;  269 540-543
  • 41 Schwartz M W. et al . Central nervous system control of food intake.  Nature. 2000;  404 661-671
  • 42 Siegrist-Kaiser C A. et al . Direct effects of leptin on brown and white adipose tissue.  J Clin Inv. 1997;  100 (11) 2858-2864
  • 43 Haynes W G. et al . Receptor-mediated regional sympathetic nerve activation by leptin.  J Clin Inv. 1997;  100 (2) 270-278
  • 44 Rayner D V, Trayhurn P. Regulation of leptin production: sympathetic nervous system interactions.  J Mol Med. 2001;  79 (1) 8-20
  • 45 Niijima A. Afferent signals from leptin sensors in the white adipose tissue of the epididymis, and their reflex effect in the rat.  J Aut Ner Sys. 1998;  73 19-25
  • 46 Niijima A. Reflex effects from leptin sensors in the white adipose tissue of the epididymis to the efferent activity of the sympathetic and vagus nerve in the rat.  Neurosci Let. 1999;  262 125-128
  • 47 Lawrence V J, Coppack S W. The endocrine function of the fat cell-regulation by the sympathetic nervous system.  Hor Met Res. 2000;  32 453-467
  • 48 Chlouveraskis C, Hojnicki D. Lipectomy in obese hyperglycemic mice (ob/ob).  Met. 1974;  23 133-137
  • 49 Coleman D L. Effects of parabiosis of obese with diabetes and normal mice.  Diabetol. 1973;  9 294-298
  • 50 Harris R BS. Loss of body fat in lean parabiotic partners of ob/ob mice.  Am J Phys. 1997;  272 R1809-R1815
  • 51 Harris R BS. Parabiosis between db/db and ob/ob or db/+ mice.  Endocrin. 1999;  140 138-145
  • 52 Harris R BS, Bruch R C, Martin R J. In vitro evidence for an inhibitor of Lipogenesis in serum from overfed obese rats.  Am J Phys. 1989;  257 R326-R336
  • 53 Cowley M A. et al . Integration of NPY, AGRP, and melanocortin signals in the hypothalamic paraventricular nucleus: evidence of a cellular basis for the adipostat.  Neuron. 1999;  1 155-163
  • 54 Loftus T. An adipocyte-central nervous system regulatory loop in the control of adipose homeostasis.  Sem Cell Devel Bio. 1999;  10 11-18
  • 55 Satoh N. et al . The arcuate nucleus as a primary site of satiety effect of leptin in rats.  Neurosci Let. 1997;  224 149-152
  • 56 Schwartz M W. et al . Specificity of leptin action on elevated blood glucose levels and hypothalamic neuropeptide Y gene expression in ob/ob mice.  Diabetes. 1996;  44 147-151
  • 57 O’Shea D. et al . Neuropeptide Y induced feeding in the rat is mediated by a novel receptor.  Endocrinol. 1997;  139 196-202
  • 58 Sakurai T. et al . Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior.  Cell. 1998;  92 573-585
  • 59 de Lecea L. et al . The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity.  Proc Natl Acad Sci USA. 1998;  95 322-327
  • 60 Ludwig D. et al . Melanin-concentrating hormone: a functional melanocortin antagonist in the hypothalamus.  Am J Physiol. 1998;  274 E267-E633
  • 61 Schwartz M. et al . Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus.  Diabetes. 1997;  46 2119-2123
  • 62 Mizuno T. et al . Hypothalamic pro-opiomelanocortin mRNA is reduced by fasting and in ob/ob and db/db mice, but is stimulated by leptin.  Diabetes. 1998;  47 94-297
  • 63 Kristensen R. et al . Hypothalamic CART is a new anorectic reptide regulated by leptin.  Nature. 1998;  393 2-76
  • 64 Lambert P. et al . CART peptides in the central control of feeding and interactions with neuropeptide Y.  Synapse. 1998;  29 293-298
  • 65 Raber J. et al . Corticotropin releasing factor and adrenocorticotrophic hormone as potential central mediators of ob effects.  J Biol Chem. 1997;  272 15 057-15 060
  • 66 Shimizu H. et al . Effects of MSH on food intake, body weight, and coat color of the yellow obese mouse.  Life Sci. 1989;  45 543-552
  • 67 Ollmann M. et al . Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein.  Science. 1997;  278 135-138
  • 68 Shutter J R. et al . Hypothalamic expression of ART, a novel gene related to agouti, is up-regulated in obese and diabetic mutant mice.  Genes Dev. 1997;  11 593-602
  • 69 Loftus T M. et al . Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors.  Science. 2000;  288 2379-2381
  • 70 Shimokawa T, Kumar M V, Lane M D. Effect of a fatty acid synthase inhibitor on food intake and expression of hypothalamic neuropeptides.  Proc Natl Acad Sci USA. 2002;  99 (1) 66-71
  • 71 Bray G A. Reciprocal relation of food intake and sympathetic activity: experimental observations and clinical implications.  Int J Ob Met Dis. 2000;  24 (S2) S8-S17
  • 72 Cantu R C, Goodman H M. Effects of denervation and fasting on white adipose tissue.  Am J Phys. 1967;  212 (1) 207-232
  • 73 Bartness T J, Bamshad M. Innervation of mammalian white adipose tissue: implications for the regulation of total body fat.  Am J Physiol. 1998;  275 (44) R1399-R1411
  • 74 Correll J W. Adipose tissue: ability to respond to nerve stimulation in vitro.  Science. 1963;  140 387-388
  • 75 Havel R J, Goldfien A. The role of the sympathetic nervous system in the metabolism of free fatty acids.  J Lip Res. 1959;  1 (1) 102-108
  • 76 Barkai A, Allweis C. Effect of electrical stimulation of the hypothalamus on plasma levels of free fatty acids and glucose in rats.  Met. 1972;  21 (10) 921-927
  • 77 Kumon A. et al . Mechanism of lipolysis induced by electrical stimulation of the hypothalamus in the rabbit.  J Lip Res. 1976;  17 551-558
  • 78 Steffens A B. et al . Circulating free fatty acids, insulin, and glucose during chemical stimulation of hypothalamus in rats.  Am J Phys. 1984;  247 (10) E765-E771
  • 79 Beznák A BI, Hasch Z. The effect of sympathectomy on the fatty deposit in connective tissue.  Q J Ex Phys. 1937;  27 1-15
  • 80 Weiss B, Maickel R. Pharmacological demonstration of sympathetic innervation of adipose tissue.  Pharmacol. 1964;  6 172
  • 81 Bray G A, Inoue S, Nishizawa Y. Hypothalamic obesity: the autonomic hypothesis and the lateral hypothalamus.  Diabetol. 1981;  20 366-377
  • 82 Cousin B. et al . Local sympathetic denervation of white adipose tissue in rats induces preadipocyte proliferation without noticeable changes in metabolism.  Endocrinol. 1993;  133 (5) 2255-2262
  • 83 Youngstrom T G, Bartness T J. White adipose tissue sympathetic nervous system denervation increases fat pad mass and fat cell number.  Am J Phys. 1998;  275 R1488-R1493
  • 84 Wirsen C. Adrenergic innerveration of adipose tissue examined by fluorescence microscopy.  Nature. 1964;  202 913
  • 85 Wirsen C. Studies in lipid mobilization with special reference to morphological and histochemical aspects.  Acta Physiol Scand. 1965;  65 1-46
  • 86 Slavin B G, Ballard K W. Morphological studies on the adrenergic innervation of white adipose tissue.  Anat Rec. 1978;  191 377-390
  • 87 Hausman G J, Richardson R L. Adrenergic innervation of fetal pig adipose tissue: histochemical and ultrastructural studies.  Acta Anat. 1987;  130 291-297
  • 88 Nnodim J O, Lever J D. Neural and vascular provisions of rat interscapular brown adipose tissue.  Am J Anat. 1988;  182 283-293
  • 89 Daniel H, Derry D M. Criteria for differentiation of brown and white fat in the rat.  Can J Physiol Pharmacol. 1969;  47 941-945
  • 90 Ballantyne B, Raftery A T. The intrinsic autonomic innervation of white adipose tissue.  Cytobios. 1974;  10 187-197
  • 91 Diculescu I, Stoica M. Fluorescence histochemical investigations on the adrenergic innervation of the white adipose tissue in the rat.  J Neuro-Visceral Rel. 1970;  32 25-36
  • 92 Ballard K, Malmfors T, Rosell S. Adrenergic innervation and vascular patterns in canine adipose tissue.  Microvasc Res. 1974;  8 164-171
  • 93 Youngstrom T G, Bartness T J. Catecholaminergic innervation of white adipose tissue in siberian hamsters.  Am J Phys. 1995;  268 (37) R744-R751
  • 94 Bamshad M. et al . Central nervous system origins of the sympathetic nervous system outflow to white adipose tissue.  Am J Phys. 1998;  275 (44) R291-R299
  • 95 Strack A M. et al . A general pattern of CNS innervation of the sympathetic outflow demonstrated by transneuronal pseudorabies viral infections.  Brain Res. 1989;  491 156-162
  • 96 DeFalco J. et al . Virus-assisted mapping of neural inputs to a feeding center in the hypothalamus.  Science. 2001;  291 2608-2613
  • 97 Shi H, Bartness T J. Neurochemical phenotype of sympathetic nervous system outflow from brain to white fat.  Brain Res Bull. 2001;  54 (4) 375-385
  • 98 Fishman R B, Dark J. Sensory innervation of white adipose tissue.  Am J Phys. 1987;  253 (22) R942-R944
  • 99 Fredholm B B. Nervous control of circulation and metabolism in white adipose tissue. In: Cryer A and Van RLR (eds) New Perspectives in Adipose Tissue: Structure, Function and Development. Boston; Butterworths 1985: 45-64
  • 100 Cui J, Zaror-Behrens G, Himms-Hagen J. Capsaicin desensitization induces atrophy of brown adipose tissue in rats.  Am J Phys. 1990;  259 R324-R332
  • 101 Cui J, Himms-Hagen J. Rapid but transient atrophy of brown adipose tissue in capsaicin-desensitized rats.  Am J Phys. 1992;  262 R562-R567
  • 102 Cui J, Himms-Hagen J. Long-term decrease in body fat and in brown adipose tissue in capsaicin-desensitzed rats.  Am J Phys. 1992;  262 R568-R573
  • 103 Melnyk A, Himms-Hagen J. Temperature-dependent feeding: lack of role for leptin and defect in brown adipose tissue-ablated obese mice.  Am J Phys. 1998;  274 R1131-R1135
  • 104 Norman D. et al . Neuropeptides in interscapular and perirenal brown adipose tissue in the rat: a plurality of innervation.  J Neurocyt. 1988;  17 305-311
  • 105 Ballantyne B. Histochemical and biochemical aspects of cholinesterase activity of adipose tissue.  Arch Int Pharmacodyn Ther. 1968;  173 343-350
  • 106 Dodd J, Role L W. The autonomic nervous system. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of Neural Science. New York; Elsevier Science Publishing Company Inc 1991: 761-775
  • 107 Trayhurn P, Ashwell M. Control of white and brown adipose tissues by the autonomic nervous system.  Proc Nutr Soc. 1987;  46 135-142
  • 108 Correll J W. Mobilization of unesterified fatty acids (UFA) from isolated rat adipose tissue by nerve stimulation, in vitro.  Fed Proc. 1961;  20 275
  • 109 Ko C-P. et al . Synaptic transmission between rat superior cervical ganglion neurons in dissociated cell cultures.  Brain Res. 1976;  117 461-485
  • 110 Green H, Kehinde O. Sublines of mouse 3T3 cells that accumulate lipid.  Cell. 1974;  1 113-116
  • 111 Green H, Meuth M. An established pre-adipose cell line and its differentiation in culture.  Cell. 1974;  3 127-133
  • 112 Green H, Kehinde O. An established preadipose cell line and its differentiation in culture II. factors affecting the adipose conversion.  Cell. 1975;  5 19-27
  • 113 Green H, Kehinde O. Spontaneous heritable changes leading to increased adipose conversion in 3T3 cells.  Cell. 1976;  7 105-113
  • 114 Green H, Todaro G J. The mammalian cell as differentiated microorganism.  Ann Rev Microbiol. 1967;  21 573-600
  • 115 Cornelius P, MacDougald O A, Lane M D. Regulation of adipocyte development.  Ann Rev Nutr. 1994;  14 99-129
  • 116 MacDougald O A, Lane M D. Transcriptional regulation of gene expression during adipocyte differentiation.  Ann Rev Biochem. 1995;  64 345-373
  • 117 Green H, Kehinde O. Formation of normally differentiated subcutaneous fat pads by an established preadipose cell line.  J Cell Phys. 1979;  101 169-172
  • 118 Mandrup S. et al . Obese gene expression at in vivo levels by fat pads derived from s. c. implanted 3T3-F442A preadipocytes.  Proc Natl Acad Sci USA. 1997;  94 4300-4305
  • 119 Ross S E. et al . Inhibition of adipogenesis by Wnt signalling.  Science. 2000;  289 950-953
  • 120 Mackall J C. et al . Induction of lipogenesis during differentiation in a “preadipocyte” cell line.  J Biol Chem. 1976;  251 6462-6464
  • 121 Coleman R A. et al . Selective changes in microsomal enzymes of triacylglycerol, phosphatidylcholine, and phosphatidylethanolamine biosynthesis during differentiation of 3T3-L1 preadipocytes.  J Biol Chem. 1978;  253 7256-7261
  • 122 Rubin C S. et al . Development of hormone receptors and hormonal responsiveness in vitro. Insulin receptors and insulin sensitivity in the preadipocyte and adipocyte forms of 3T3-L1 cells.  J Biol Chem. 1978;  253 7570-7578
  • 123 Reed B C, Lane M D. Insulin receptor synthesis and turnover in differentiating 3T3-L1 preadipocytes.  Proc Natl Acad Sci USA. 1980;  77 285-289
  • 124 Student A K, Hsu R Y, Lane M D. Induction of fatty acid synthetase synthesis in differentiating 3T3-L1 preadipocytes.  J Biol Chem. 1980;  255 (10) 4745-4750
  • 125 Bernlohr D A. et al . Evidence for an increase in transcription of specific mRNAs during differentiation of 3T3-L1 preadipocytes.  J Biol Chem. 1985;  260 (9) 5563-5567
  • 126 Ntambi J M. et al . Differentiation-induced gene expression in 3T3-L1 preadipocytes. characterization of a differentially expressed gene encoding stearoyl-CoA desaturase.  J Biol Chem. 1988;  263 17 291-17 300
  • 127 Kaestner K H. et al . Differentiation-induced gene expression in 3T3-L1 preadipocytes. A second differentially expressed gene encoding stearoyl-CoA desaturase.  J Biol Chem. 1989;  264 14 755-14 761
  • 128 MacDougald O A. et al . Regulated expression of the obese gene product (leptin) in white adipose tissue and 3T3-L1 adipocytes.  Proc Natl Acad Sci USA. 1995;  92 9034-9037
  • 129 Bray D. Surface movements during the growth of single explanted neurons.  Proc Natl Acad Sci USA. 1970;  65 905-910
  • 130 Mains R E, Patterson H. Primary cultures of dissociated sympathetic neurons: I. establishment of long-term growth in culture and studies of differentiated properties.  J Cell Biol. 1973;  59 329-345
  • 131 Mains R E, Patterson H. Primary cultures of dissociated sympathetic neurons: II. initial studies on catecholamine metabolism.  J Cell Biol. 1973;  59 346-360
  • 132 Mains R E, Patterson H. Primary cultures of dissociated sympathetic neurons: III. changes in metabolism with age in culture.  J Cell Biol. 1973;  59 361-366
  • 133 Higgins D. et al .Tissue culture of mammalian autonomic neurons. In: Banker G and Goslin K (eds) Culturing Nerve Cells. Cambridge, Massachusetts; The MIT Press 1991: 177-205
  • 134 Marek K L, Mains R E. Biosynthesis, development, and regulation of neuropeptide Y in superior cervical ganglion culture.  J Neurochem. 1989;  52 (6) 1807-1816
  • 135 Paquet L, Massie B, Mains R E. Proneuropeptide Y processing in large dense-core vesicles: manipulation of prohormone convertase expression in sympathetic neurons using adenoviruses.  J Neurosci. 1996;  16 (3) 964-973
  • 136 Marx R. et al . Differences in the ways sympathetic neurons and endocrine cells process, store, and secrete exogenous neuropeptides and peptide-processing enzymes.  J Neurosci. 1999;  19 (19) 8300-8311
  • 137 Potter D D, Furshpan E J, Landis S C. Transmitter status in cultured rat sympathetic neurons: plasticity and multiple function.  Fed Proc. 1983;  42 1626-1632
  • 138 Landis S C. Development of cholinergic sympathetic neurons: evidence for transmitter plasticity in vivo.  Fed Proc. 1983;  42 1633-1638
  • 139 Landis S C. Target regulation of neurotransmitter phenotype.  Trends Neuro. 1990;  13 (8) 344-350
  • 140 Wakade A R, Wakade T D. Comparison of transmitter release properties of embryonic sympathetic neurons growing in vivo and in vitro.  Neurosci. 1988;  27 (3) 1001-1019
  • 141 Wakade T D. et al . Morphological and transmitter release properties are changed when sympathetic neurons are cultured in low Ca2+ culture medium.  Neurosci. 1995;  67 (4) 967-976
  • 142 Ko C-P. et al . Synaptic transmission between rat spinal cord explants and dissociated superior cervical ganglion neurons in tissue culture.  Brain Res. 1976;  117 437-460
  • 143 Patterson H, Chun L LY. The induction of acetylcholine synthesis in primary cultures of dissociated rat sympathetic neurons. II. developmental aspects.  Dev Biol. 1977;  60 473-481
  • 144 Landis S C. Developmental changes in the neurotransmitter properties of dissociated sympathetic neurons: a cytochemical study of the effects of medium.  Dev Biol. 1980;  77 349-361
  • 145 LeDouarin N, Smith J, LeLievre C S. From the neural crest to the ganglia of the peripheral nervous system.  Ann Rev Phys. 1981;  43 653-671
  • 146 Schotzinger R J, Landis S C. Cholinergic phenotype developed by noradrenergic sympathetic neurons after innervation of a novel cholinergic target in vivo.  Nature. 1988;  335 637-639
  • 147 Voyvodic J T. Peripheral target regulation of dendritic geometry in the rat superior cervical ganglion.  J Neurosci. 1989;  9 1997-2010
  • 148 von Kûgelgen I. et al . Corelease of noradrenaline and adenosine triphosphate from sympathetic neurones.  Adv Pharm. 1998;  42 120-125
  • 149 Cunha R A, Ribeiro J A. ATP as a presynaptic modulator.  Life Sci. 2000;  68 119-137
  • 150 Järvi R. et al . NPY-like immunoreactivity in rat sympathetic neurons and small granule-containing cells.  Neurosci Let. 1986;  67 223-227
  • 151 Kessler J A, Conn G, Hatcher V B. Isolated plasma membranes regulate neurotransmitter expression and facilitate effects of a soluble brain cholinergic factor.  Proc Natl Acad Sci USA. 1986;  83 3528-3532
  • 152 Matsumoto S G. et al . Synaptic functions in rat sympathetic neurons in microcultures. IV. noradrenergic excitation of cardiac myocytes and the variety of multiple-transmitter states.  J Neurosci. 1987;  7 380-390
  • 153 Tyrell S, Landis S C. The appearance of NPY and VIP in sympathetic neuroblasts and subsequent alterations in their expression.  J Neurosci. 1994;  14 4529-4547
  • 154 Kessler J A. et al . Target organ regulation of substance P in sympathetic neurons in culture.  Dev Biol. 1984;  103 71-79
  • 155 Kessler J A. Non-neuronal cell conditioned medium stimulates peptidergic expression in sympathetic and sensory neurons in vitro.  Dev Biol. 1984;  106 61-69
  • 156 Nawa H, Sah D WY. Different biological activities in conditioned media control the expression of a variety of neuropeptides in cultured sympathetic neurons.  Neuron. 1990;  4 279-287
  • 157 Turtzo L C, Marx R, Lane M D. Cross-talk between sympathetic neurons and adipocytes in coculture.  Proc Natl Acad Sci USA. 2001;  98 12 385-12 390
  • 158 Okun L M. Isolated dorsal root ganglion neurons in culture: cytological maturation and extension of electrically active processes.  J Neurobiol. 1972;  3 (2) 111-151
  • 159 Jessen K R, Saffrey M J, Burnstock G. The enteric nervous system in tissue culture I. Cell types and their interactions in explants of the myenteric and submucous plexuses from guinea pig, rabbit, and rat.  Brain Res. 1983;  262 17-35
  • 160 Nishi R, Willard A L. Neurons dissociated from rat myenteric plexus retain differentiated properties when grown in cell culture I. Morphological properties and immunocytochemical localization of transmitter candidates.  Neurosci. 1985;  16 187-199
  • 161 Ross S R. et al . Hibernoma formation in transgenic mice and isolation of a brown adipocyte cell line expressing the uncoupling protein gene.  Proc Natl Acad Sci USA. 1992;  89 7561-7565
  • 162 Klaus S. et al . Characterization of the novel brown adipocyte cell line HIB 1B: adrenergic pathways involved in regulation of uncoupling protein gene expression.  J Cell Sci. 1994;  107 313-319

L. C. Turtzo

Department of Biological Chemistry

Johns Hopkins University School of Medicine · 725 North Wolfe Street · Baltimore, MD 21205 · USA ·

Telefon: + 1 (410) 955-3975

Fax: + 1 (410) 955-0903

eMail: lturtzo@jhmi.edu