Zusammenfassung
Prädisponierend für die Entstehung eines Zervixkarzinoms ist die Infektion mit humanen „high-risk” Papillomviren (HPV). Es gibt nur wenige Zervixkarzinome, bei denen keine HPV DNA nachweisbar ist. Mechanismen der Immortalisierung von Epithelzellen durch Interaktion mit Tumorsuppressorgenen p53 und pRB durch virale Onkogene E6 und E7 wurden definiert. Die Progression einer HPV-infizierten Zelle zu einem malignen Phänotyp erfordert weitere genetische Veränderungen des Wirtszellgenoms. Mit dem Auftreten von chromosomalen Aberrationen kann es zur Mutation oder dem Verlust von Tumorsuppressorgenen (TSG) und zur Aktivierung und Amplifikation von Onkogenen kommen, die im Prozess der Tumorgenese involviert sind. Die Onkogenamplifikation scheint mit Ausnahme weniger Berichte allerdings in der Zervixkarzinogenese nicht bedeutsam zu sein. Demgegenüber zeigen zytogenetische und „loss of heterozygosity” LOH-Untersuchungen an CIN-Läsionen und an invasiven Zervixkarzinomen den häufigen Verlust von spezifischen chromosomalen Regionen, die auf die Lokalisation von TSG hinweisen. Genetische Veränderungen der Chromosomen 3p, 6p und 11q wurden häufig in der frühen Tumorentwicklung gefunden. Primäre invasive Karzinome zeigten zusätzliche Allelverluste an Chromosomenbereichen 6q, 17p und 18q. Als biologische Marker für die diagnostische und prognostische Einschätzung von „high-risk” HPV Infektionen und maligne Progression sind für bestimmte Fragestellungen p16INK4 , p27Kip1 , und NET-I/C4.8 zu nennen. Putative Seneszenzgenloci mit Relevanz für HPV-induzierte Karzinogenese sind auf Chromosomen 2, 4 und 10 lokalisiert. Gene für Telomerasesuppression werden auf den Chromosomen 3, 4, und 6 vermutet. Natürliche Immunität gegen HPV Infektionen existieren. Daher sind Immuntherapien eine attraktive Möglichkeit für die Prävention und Therapie von HPV Infektionen. Derzeit hat die Vakzinentwicklung das Stadium der klinischen Prüfung erreicht. Prophylaxe zielt auf die Induktion virus-neutralisierender Antikörper gegen Kapsidproteine. Auf Virus-ähnliche Partikel basierende Impfstoffe werden in klinischen Versuchen geprüft. Wegen der langen Verzögerungsperiode zwischen Infektion und klinischer Manifestation werden klinische Untersuchungen einer langen Zeit bedürfen, bis schlüssige Ergebnisse vorliegen. Die grundsätzliche Expression viraler und vielleicht zellulärer Gene in infizierten Epithelien und Tumorzellen bietet Zielstrukturen für therapeutische Vorgehensweisen. Dass die meisten Dysplasien spontan regredieren zeigt, dass die Virusinfektion immunogen ist. In einigen Patientinnen muss die Immunantwort durch Impfungen verstärkt werden, um effektiv zu sein. Verschiedene Strategien werden in klinischen Versuchen getestet und andere sind in präklinischer Entwicklung. Die Aufgabe wird sein, die Immunsuppression von HPV-Infizierten zu umgehen.
Schlüsselwörter
Humane Papillomaviren (HPV) - Progression - Genomveränderungen - Prophylaxe - Immuntherapie - Klinische Studien
References
1
Walboomers J M, Jacobs M V, Manos M M, Bosch F X, Kummer J A, Shah K V, Snijders P J, Peto J, Meijer C J, Munoz N.
Human papillomavirus is a necessary cause of invasive cervical cancer worldwide.
J Pathol.
1999;
189
12-19
2
Stoler M H.
Human papillomaviruses and cervical neoplasia: A model for carcinogenesis.
Int J Gynecol Pathol.
2000;
19
16-28
3
Lorincz A T, Reid R, Jenson A B, Greenberg M D, Lancaster W, Kurman R J.
Human papillomavirus infection of the cervix: Relative risk associations of 15 common anogenital types.
Obstet Gynecol.
1992;
79
328-337
4
Wright W E, Shay J W.
The two-stage mechanism controlling cellular senescence and immortalization.
Exp Gerontol.
1992;
27
383-389
5
Shay J W, Wright W E, Brasiskyte D, Van-der-Haegen B A.
E6 of human papillomavirus type 16 can overcome the M1 stage of immortalization in human mammary epithelial cells but not in human fibroblasts.
Oncogene.
1993;
8
1407-1413
6
Wu T C.
Immunology of the human papillomavirus in relation to cancer.
Curr Opin Immunol.
1994;
6
746-754
7
Munger K, Phleps W C, Bubb V, Howley P M, Schlegel R.
The E6 and E7 genes of human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes.
J Virol.
1989;
63
4417-4421
8
Scheffner M, Werness B A, Huibregtse J M, Levine A J, Howley P M.
The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53.
Cell.
1990;
63
1129-1136
9
Werness B A, Levine A J, Howley P M.
Association of human papillomavirus types 16 and 18 E6 proteins with p53.
Science.
1990;
248
76-79
10
Heilmann V, Kreienberg R.
Molecular biology of cervical cancer and ist precursors.
Curr Womens Health Rep.
2002;
2
27-33
11
Nevins J R.
Transcriptional regulation: A closer look at E2F.
Nature.
1992;
358
375-376
12
Duensing S, Munger K.
Human papillomaviruses and centrosome duplication errors: modeling the origins of genomic instability.
Oncogene.
2002;
21
6241-6248
13
Schlegel R, Wade Glass M, Rabson M S, Yang Y C.
The E5 transforming gene of bovine papillomavirus encodes a small, hydrophobic polypeptide.
Science.
1986;
233
464-467
14
Burkhardt A, DiMaio D, Schlegel R.
Genetic and biochemical definition of the bovine papillomavirus E5 transforming protein.
EMBO J..
1987;
6
2381-2385
15
Schwarz E, Freese U K, Gissmann L, Mayer W, Roggenbruck B, Stremlau A, zur Hausen H.
Structure and transcription of human papillomavirus sequences in cervical carcinoma cells.
Nature.
1985;
314
111-114
16
Bauer-Hofmann R, Borghouts C, Auvinen E, Bourda E, Rösl F, Alonso A.
Genomic cloning and characterization of the non occupied allele corresponding to the integration site of human papillomavirus type 16 DNA in the cervical cancer cell line SiHa.
Virology.
1996;
217
33-41
17
zur Hausen H.
Papillomaviruses and cancer: from basic studies to clinical application.
Nature Reviews.
2002;
2
342-350
18
Rodriguez M I, Finbow M E, Alonso A.
Binding of human papillomavirus 16 E5 to the 16 kDa subunit c (proteolipid) of the vacuolar H+ -ATPase can be dissociated from the E5- mediated epidermal growth factor receptor overactivation.
Oncogene.
2000;
19
3727-3732
19
Finbow M E, Pitts J D, Goldstein D J, Schlegel R, Findlay J B.
The E5 oncoprotein target: a 16-kDa channel-forming protein with diverse functions.
Mol.
Carcinogen1991;
4
441-444
20
Venuti A, Salani D, Poggiali F, Manni V, Bagnato A.
The E5 oncoprotein of human papillomavirus type 16 enhances endothelin-1-induced keratinocyte growth.
Virol.
1998;
248
1-5
21
Tsao Y P, Li L Y, Tsai T C, Chen S L.
Human papillomavirus type 11 and 16 E5 repesses p21 (WafI/SdiI/CipI) gene expression in fibroblasts and keratinocytes.
J Virol.
1996;
70
7535-7539
22
Seagon S, Dürst M.
Genetic analysis of an in vitro model system for human papillomavirus type 16-associated tumourigenesis.
Cancer Res.
1994;
54
5593-5598
23
Kim N W, Piatyszek M A, Prowse K R, Harley C B, West M D, Ho P LC, Coviello G M, Wright W E, Weinrich S L, Shay J W.
Specific association of human telomerase activity with immortal cells and cancer.
Science.
1994;
266
2011-2015
24
Reddel R R.
The role of senescence and immortalization in carcinogenesis.
Carcinogenesis.
2000;
21
477-484
25
Backsch C, Wagenbach N, Nonn M, Leistritz S, Stanbridge E, Schneider A, Dürst M.
Microcell-mediated transfer of chromosome 4 into HeLa cell suppresses telomerase activity.
Genes, Chromosomes & Cancer.
2001;
31
196-198
26
Steenbergen R DM, Kramer D, Meijer C JLM, Walboomers J MM, Trott D A, Cuthert A P, Newbold R F, Overkamp W JI, Zdzienicka M Z, Snijders P JF.
Telomerase suppression by chromosome 6 in a human papillomavirus type 16-immortalized keratinocyte cell line and in a cervical cancer cell line.
J Natl Cancer Inst.
2001;
93
865-872
27
Uejima H, Mitsuya K, Kugoh H, Horikawa I, Oshimura M.
Normal human chromosome 2 induces cellular senescence in the human cervical carcinoma cell line SiHa.
Genes, Chromosomes & Cancer.
1995;
14
120-127
28
Ning Y, Weber J L, Killary A M, Ledbetter D H, Smith J R, Pereira- Smith O M.
Genetic analysis of indefinite division in human cells. evidence for a cell senescence- related gene(s) on human chromosome 4.
Proc Natl Acad Sci USA.
1991;
88
5635-5639
29
Poignée M, Backsch C, Beer K, Jansen L, Wagenbach N, Stanbridge E J, Kirchmayr R, Schneider A, Dürst M.
Evidence for a putative senescence gene locus within the chromosome region 10p14-p15.
Cancer Res.
2001;
61
7118-7121
30
Bertram M J, Berube N G, Hang-Swanson X, Ran Q, Leung J K, Bryce S, Spurgers K, Bick R J, Baldini A, Ning Y, Clark L J, Parkinson E K, Barrett J C, Smith J R, Pereira-Smith O M.
Identification of a gene that reverses the immortal phenotype of a subset of cells and is a member of a novel family of transcription factor-like genes.
Mol Cell Biol.
1999 a;
19
1479-1485
31
Bertram M J, Berube N G, Swanson X H, Pereira-Smith O M.
Assembly of a BAC contig of the complementation group B cell senescence gene candidate region at 4q33-q34.1 and identification of expressed sequences.
Genomics.
1999 b;
56
353-354
32
Howley P M.
Papillomavirinae: The viruses and their replication.
Fields Virol.
1996;
1
2045-2076
33
Shah K V, Howley P M.
Papillomaviruses.
Fields Virol.
1996;
1
2077-2109
34
Peitsaro P, Johansson B, Syrjänen S.
Integrated human papillomavirus type 16 is frequently found in cervical cancer precursors as demonstrated by a novel quantitative real-time PCR technique.
J Clin Microbiol.
2002;
40
886-891
35
Nagao S, Yoshinouchi M, Miyagi Y, Hongo A, Kodama J, Itoh S, Kudo T.
Rapid and sensitive detection of physical status of human paillomavirus type 16 DNA by quantitative real-time PCR.
J Clin Microbiol.
2002;
40
863-867
36
Luft F, Klaes R, Nees M, Dürst M, Heilmann V, Melsheimer P, von Knebel Doeberitz M.
Detection of integrated papillomavirus sequences by ligation-mediated PCR (DIPS-PCR) and molecular characterization in cervical cancer cells.
Int J Cancer.
2001;
92
9-17
37
Klaes R, Woerner S M, Ridder R, Wentzensen N, Dürst M, Schneider A, Lotz B, Melsheimer P, von Knebel Doeberitz M.
Detection of high-risk cervical intraepithelial neoplasia and cervical cancer by amplification of transcripts derived from integrated papillomavirus oncogenes.
Cancer Res.
1999;
59
6132-6136
38
Ocadiz R, Sanceda R, Cruz M, Graef A M, Gariglio P.
High correlation between molecular alterations of the c-myc oncogene and carcinoma of the uterine cervix.
Cancer Res.
1987;
47
4173-4177
39
Riou G, Barrois M, Sheng Z M, Duvillard P, Lhomme C.
Somatic deletions and mutations of c-Ha-ras gene in human cervical cancers.
Oncogene.
1988;
3
329-334
40
Ried T, Heselmeyer-Haddad K, Blegen H ,. et al .
Genomic changes defining the genesis, progression and malignancy potential in solid human tumours: a phenotype/genotype correlation.
Genes, Chromosomes & Cancer.
1999;
25
195-204
41
Wistuba I I, Montellano F D, Milchgrub S, Virmani A K, Behrens C, Chen H, Ahmadian M, Nowak J A, Muller C, Minna J D, Gazdar A F.
Deletions of chromosome 3p are frequent and early events in the pathogenesis of uterine cervical carcinoma.
Cancer Res.
1997;
57
3154-3158
42
Kersemaekers A MF, van de Vijver M J, Kenter G G, Fleuren G J.
Genetic alterations during the progression of squamous cell carcinoma of the uterine cervix.
Genes, Chromosomes & Cancer.
1999;
26
346-354
43
Chung G T, Huang D P, Lo K W, Chan M K, Wong F W.
Genetic lesion in the carcinogenesis of cervical cancer.
Anticancer Res.
1992;
12
1485-1490
44
Rader J S, Gerhard D S, O'Sullivan M J, Li Y, Liapis H, Huettner P C.
Cervical intraepithelial neoplasia III shows frequent allelic loss in 3p and 6p.
Genes, Chromosomes & Cancer.
1998;
22
57-65
45
Mitra A B, Murty V V, Sigh V, Li R G, Pratap M, Sodhani P, Luthra U K, Chaganti R S.
Genetic alterations for progression.
J Natl Cancer Inst.
1995;
87
742-745
46
Chatterjee A, Pulido H A, Koul S, Beleno N, Perilla A, Posso H, Manusukhani M, Murty V V.
Mapping of sites of putative tumour suppressor genes at 6p25 and 6p21.3 in cervical carcinoma: occurrence of allelic deletions in precancerous lesions.
Cancer Res.
2001;
61
2119-2123
47
Larson A A, Liao S Y, Stanbridge E J, Cavenee W K, Hampton G M.
Genetic alterations accumulate during cervical tumourigenesis and indicate a common origin for multifocal lesions.
Cancer Res.
1997;
57
4171-4176
48
Evans M F, Koreth J, Bakkenist C J, Herrington C S, McGee J O'D.
Allelic deletion at 11q23.3-q25 is an early event in cervical neoplasia.
Oncogene.
1998;
16
2557-2564
49
O'Sullivan M J, Rader J S, Gerhard D S, Li Y, Trinkaus K M, Gersell D J, Huettner P C.
Loss of heterozygosity at 11q23.3 in vasculoinvasive and metastatic squamous cell carcinoma of the cervix.
Hum Pathol.
2001;
32
475-478
50
Heselmeyer K, Macville M, Schröck E, Blegen H, Hellström A -C, Shak K, Auer G, Ried T.
Advanced-stage cervical carcinomas are defined by a recurrent pattern of chromosomal aberrations revealing high genetic instability and a consistent gain of chromosome arm 3q.
Genes, Chromosomes & Cancer.
1997;
19
233-240
51
Dellas A, Torhorst J, Jiang F, Proffitt J, Schultheiss E, Holzgreve W, Sauter G, Mihatsch M J, Moch H.
Prognostic value of genomic alterations in invasive cervical squamous cell carcinoma of clinical stage IB detected by comparative genomic hybridization.
Cancer Res.
1999;
59
3475-3479
52
Dellas A, Torhorst J, Mihatsch M J, Moch H.
Genomische Aberrationen beim invasiven Zervixkarzinom.
Geburtsh Frauenheilk.
2002;
62
458-464
53
Cheung T H, Chung T K, Poon C S, Hampton G M, Wang V W, Wong Y F.
Allelic loss on chromosome 1 is associated with tumour progression of cervical carcinoma.
Cancer.
1999;
86
1294-1298
54
Heselmeyer K, Schröck E, Du Manoir S, Blegen H, Shah K, Steinbeck R, Auer G, Ried T.
Gain of chromosome 3q defines the transition from severe dysplasia to invasive carcinoma of the uterine cervix.
Proc Natl Acad Sci USA.
1996;
93
497-484
55
Krivak T C, McBroom J W, Seidman J, Venzon D, Crothers B, MacKoul P J, Rose G S, Carlson J W, Birrer M J.
Abnormal fragile histidine triad (FHIT) expression in advanced cervical carcinoma: a poor prognostic factor.
Cancer Res.
2001;
61
4382-4385
56
Vecchione A, Zanesi N, Trombetta G, French D, Visca P, Pisani T, Botti C, Vecchione A, Croce C M, Mancini R.
Cervical dysplasia, ploidy, and human papillomavirus status correlate with loss of Fhit expression.
Clin Cancer Res.
2001;
7
1306-1312
57
Su T H, Chang J G, Perng L I, Chang C P, Wie H J, Wang N M, Tsai C H.
Mutation analysis of the putative tumour suppressor gene PTEN/MMAC1 in cervical cancer.
Gynecol Oncol.
2000;
76
193-199
58
Storey A, Thomas M, Kalita A, Harwood C, Gardiol D, Mantovani F, Breuer J, Leigh I M, Matlashewski G, Banks L.
Role of a p53 polymorphism in the development of human papillomavirus-associated cancer.
Nature.
1998;
393
229-234
59
Klaes R, Ridder R, Schaefer U, Benner A, Doeberitz M V.
No evidence of p53 allele-specific predisposition in human papillomavirus-associated cervical cancer.
J Med Medicine.
1999;
77
299-302
60
Lanham S, Campbell I, Watt P, Gornall R.
p53 polymorphism and risk of cervical cancer.
Lancet.
1998;
352
1631
61
Hildesheim A, Schiffmann M, Brinton L A, Fraumeni J F, Herrero R, Bratti M C, Schwartz P, Mortel R, Barnes W, Greenberg M, McGowan L, Scott D R, Martin M, Herrera J E, Carrington M.
p53 polymorphism and risk of cervical cancer.
Nature.
1998;
396
531-532
62
Van Duin M, Snijders P J, Vossen M T, Klaassen E, Voorhorst F, Verheijen R H, Helmerhorst T J, Meijer C J, Walboomers J M.
Analysis of human papillomavirus type 16 E6 variants in relation to p53 codon 72 polymorphism genotypes in cervical carcinogenesis.
J Gen Virol.
2000;
81
317-325
63
Cuzick J, Terry G, Ho L, Monaghan J, Lopes A, Clarkson P, Duncan I.
Association between high-risk HPV types, HLA DRB1* and DQB1* alleles and cervical cancer in British women.
Brit J of Cancer.
2000;
82
1348-1352
64
Serano M.
The tumour suppressor protein p16INK4a.
.
Exp Cell Res.
1997;
237
7-13
65
Klaes R, Friedrich T, Spitkovsky D, Ridder R, Rudy W, Petry U, Dallenbach-Hellweg G, Schmidt D, von Knebel Doeberitz M.
Overexpression of p16INK4A as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri.
Int J Cancer.
2001;
92
276-284
66
Wollscheid V, Kühne-Heid R, Stein I, Jansen L, Köllner S, Schneider A, Dürst M.
Identification of a new proliferation-associated protein NET-1/C4.8 characteristic for a subset of high-grade cervical intraepithelial neoplasia and cervical carcinomas.
Int J Cancer.
2002;
99
771-775
67
Huang L W, Chao S L, Hwang J L, Chou Y Y.
Down-regulation of p27 is associated with malignant transformation and aggressive phenotype of cervical neoplasms.
Gynecol Oncol.
2002;
85
524-528
68
Troncone G, Vetrani A, Rosa G D, Gerbasio D, Palombini L.
Cyclin dependent kinase inhibitor p27Kip1 expression in normal and neoplastic cervical epithelium.
J Clin Pathol.
1999;
52
880-887
69
Zerfass-Thome K, Zwerschke W, Mannhardt B, Tindle R, Botz J W, Jansen-Durr.
Inactivation of the cdk inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein.
Oncogene.
1996;
13
2323-2330
70
Dillner J.
The serological response to papillomaviruses.
Semin Cancer Biol.
1999;
9
423-430
71
Coleman N, Birley H D, Renton A M, Hanna N F, Ryait B K, Byrne M, Taylor-Robinson D, Stanley M A.
Immunological events in regressing genital warts.
Am J Clin Pathol.
1994;
102
768-774
72
Bal V, McIndoe A, Denton G, Hudson D, Lombardi G, Lamb J, Lechler R.
Antigen presentation by keratinocytes induces tolerance in human T cells.
Eur J Immunol.
1990;
20
1893-1897
73
Jochmus-Kudielka I, Schneider A, Braun R, Kimmig R, Koldovsky U, Schneweis K E, Seedorf K, Gissmann L.
Antibodies against the human papillomavirus type 16 early proteins in human sera: Correlation of anti-E7 reactivity with cervical cancer.
J Natl Cancer Inst.
1989;
81
1698-1704
74
Meschede W, Zumbach K, Braspenning J, Scheffner M, Benitez-Bribiesca L, Luande J, Gissmann L, Pawlita M.
Antibodies against early proteins of human papillomaviruses as diagnostic markers for invasive cervical cancer.
J Clin Microbiol.
1998;
36
475-480
75
Melbye M, Palefsky J, Gonzales J, Ryder L P, Nielsen H, Bergmann O, Pindborg J, Biggar R J.
Immune status as a determinant of human papillomavirus detection and its association with anal epithelial abnormalities.
Int J Cancer.
1990;
46
203-206
76
Klein R S, Ho G Y, Vermund S H, Fleming I, Burk R D.
Risk factors for squamous intraepithelial lesions on PAP smear in women at risk for human immunodeficiency virus infection.
J Infect Dis.
1994;
170
1404-1409
77
Palefsky J M.
Human papillomavirus infection and anogenital neoplasia in human immunodeficiency virus- positive men and women.
J Natl Cancer Inst Monogr.
1998;
23
15-20
78
Santin A D, Hermonat P L, Ravaggi A, Chiriva- Internati M, Zhan D, Pecorelli S, Parham G P, Cannon M J.
Induction of human papillomavirus-specific CD4(+) and CD8(+) lymphocytes by E7-pulsed autologous dendritic cells in patients with human papillomavirus type 16- and 18-positive cervical cancer.
J Virol.
1999;
73
5402-5410
79
Hohn H, Pilch H, Gunzel S, Neukirch C, Freitag K, Necker A, Maeurer M J.
Human papillomavirus type 33 E7 peptides presented by HLA-DR*0402 to tumour-infiltrating T cells in cervical cancer.
J Virol.
2000;
74
6632-6636
80
Höpfl R, Heim K, Christensen N, Zumbach K, Wieland U, Volgger B, Widschwendter A, Haimbuchner S, Müller-Holzner E, Pawlita M, Pfister H, Fritsch P.
Spontaneous regression of CIN and delayed-type hypersensitivity to HPV-16 oncoprotein E7.
The Lancet.
2000;
356
1985-1986
81
Breitburd F, Kirnbauer R, Hubbert N L, Nonnenmacher B, Trin- Dinh-Desmarquet C, Orth G, Schiller J T, Lowy D R.
Immunization with viruslike particles from cottontail rabbit papillomavirus (CRPV) can protect against experimental CRPV infection.
J Virol.
1995;
69
3959-3963
82
Suzich J A, Ghim S J, Palmer-Hill F J, White W I, Tamura J K, Bell J A, Newsome J A, Jenson A B, Schlegel R.
Systemic immunization with papillomavirus L1 protein completely prevents the development of viral mucosal papillomas.
Proc Natl Acad Sci USA.
1995;
92
11553-11557
83
Parr M B, Parr E L.
Immunohistochemical localization of immunoglobulins A, G and M in the mouse female genital tract.
J Reprod Fertil.
1985;
74
361-370
84
Thapar M A, Parr E L, Parr M B.
Secretory immune responses in mouse vaginal fluid after pelvic, parenteral or vaginal immunization.
Immunology.
1990;
70
121-125
85
Hagensee M E, Yaegashi N, Galloway D A.
Self- assembly of human papillomavirus type 1 capsids by expression of the L1 protein alone or by coexpression of the L1 and L2 capsid proteins.
J Virol.
1993;
67
315-322
86
Zhou J, Sun X Y, Davies H, Crawford L, Park D, Frazer I H.
Definition of linear antigenic regions of the HPV16 L1 capsid protein using synthetic virion-like particles.
Virology.
1992;
189
592-599
87
Kirnbauer R, Booy F, Cheng N, Lowy D R, Schiller J T.
Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic.
Proc Natl Acad Sci USA.
1992;
89
12180-12184
88
Sasagawa T, Pushko P, Steers G, Gschmeissner S E, Hajibagheri M A, Finch J, Crawford L, Tommasino M.
Synthesis and assembly of virus-like particles of human papillomaviruses type 6 and type 16 in fission yeast Schizosaccharomyces pombe.
Virology.
1995;
206
126-135
89
Benyacoub J, Hopkins S, Potts A, Kelly S, Kraehenbuhl J P, Curtiss R 3 rd, De Grandi P, Nardelli-Haefliger D.
The nature of the attenuation of Salmonella typhimurium strains expressing human papillomavirus type 16 virus-like particles determines the systemic and mucosal antibody responses in nasally immunized mice.
Infect Immun.
1999;
67
3674-3679
90
Nardelli-Haefliger D, Roden R B, Benyacoub J, Sahli R, Kraehenbuhl J P, Schiller J T, Lachat P, Potts A, De Grandi P.
Human papillomavirus type 16 virus-like particles expressed in attenuated Salmonella typhimurium elicit mucosal and systemic neutralizing antibodies in mice.
Infect Immun.
1997;
65
3328-3336
91
Kirnbauer R, Chandrachud L M, O’Neil B W, Wagner E R, Grindlay G J, Armstrong A, McGarvie G M, Schiller J T, Lowy D R, Campo M S.
Virus-like particles of bovine papillomavirus type 4 in prophylactic and therapeutic immunization.
Virology.
1996;
219
37-44
92
Suzich J A, Ghim S J, Palmer-Hill F J, White W I, Tamura J K, Bell J A, Newsome J A, Jenson A B, Schlegel R.
Systemic immunization with papillomavirus L1 protein completely prevents the development of viral mucosal papillomas.
Proc Natl Acad Sci USA.
1995;
92
11553-11557
93
Rose R C, Lance C, Wilson S, Suzich J A, Rybicki E, Williamson A L.
Oral vaccination of mice with human papillomavirus virus-like particles induces systemic virus-neutralizing antibodies.
Vaccine.
1999;
17
2129-2135
94
Harro C D, Pang Y Y, Roden R B, Hildesheim A, Wang Z, Reynolds M J, Mast T C, Robinson R, Murphy B R, Karron R A, Dillner J, Schiller J T, Lowy D R.
Safety and immunogenicity trial in adult volunteers of a human papillomavirus 16 L1 virus-like particle vaccine. J Natl.
Cancer Inst.
2001;
93
284-292
95 Plummer M HR. Potential impact of HPV vaccines: epidemiological perspectives. 18th International Papillomavirus Conference, 2000, Barcelona, Spain
96
Koutsky L A, Ault K A, Wheeler C M, Brown D R, Barr E, Alvarez F B, Chiacchierini L M, Jansen K U.
A controlled trial of a human papillomavirus type 16 vaccine.
N Engl J Med.
2002;
347
1645-1651
97
Evans T G, Bonnez W, Rose R C, Koenig S, Demeter L, Suzich J A, O’Brien D, Campbell M, White W I, Balsley J, Reichmann R C.
A phase I study of a recombinant viruslike particle vaccine against human papillomavirus type 11 in healthy adult volunteers.
J Infect Dis.
2001;
183
1485-1493
98
Zhang L F, Zhou J, Chen S, Cai L L, Bao Q Y, Zheng F Y, Lu J Q, Padmanahba J, Hengst K, Malcom K, Frazer I H.
HPV6b virus like particles are potent immunogens without adjuvant in man.
Vaccine.
2000;
18
1051-1058
99
Stoler M H, Rhodes C R, Whitbeck A, Wolinsky S M, Chow L T, Broker T R.
Human papillomavirus type 16 and 18 gene expression in cervical neoplasias.
Hum Pathol.
1992;
23
117-128
100
Stoler M H, Wolinsky S M, Whitbeck A, Broker T R, Chow L T.
Differentiation-linked human papillomavirus types 6 and 11 transcription in genital condylomata revealed by in situ hybridization with message-specific RNA probes.
Virology.
1989;
172
331-340
101
Crook T, Morgenstern J P, Crawford L, Banks L.
Continued expression of HPV-16 E7 protein is required for maintenance of the transformed phenotype of cells cotransformed by HPV-16 plus EJ-ras.
EMBO J.
1989;
8
513-519
102
Campo M S, Grindlay G J, O’Neil B W, Chandrachud L M, McGarvie G M, Jarrett W F.
Prophylactic and therapeutic vaccination against a mucosal papillomavirus.
J Gen Virol.
1993;
74
945-953
103
Feltkamp M C, Smits H L, Vierboom M P, Minnaar R P, de Jongh B M, Drijfhout J W, ter Schegget J, Melief C J, Kast W M.
Vaccination with cytotoxic T lymphocyte-epitope-containing peptide protects against a tumour induced by human papillomavirus type 16-transformed cells.
Eur J Immunol.
1993;
23
2242-2249
104
Fernando G J, Murray B, Zhou J, Frazer I H.
Expression, purification and immunological characterization of the transforming protein E7, from cervical cancer-associated human papillomavirus type 16.
Clin Exp Immunol.
1999;
115
397-403
105
Lacey C J, Thompson H S, Monteiro E F, O’Neill T, Davies M L, Holding F P, Fallon R E, Roberts J S.
Phase IIa safety and immunogenicity of a therapeutic vaccine, TA-GW, in persons with genital warts.
J Infect Dis.
1999;
179
612-618
106
Chen C -H, Wang T -L, Hung C -F, Pardoll D M, Wu T -C.
Boosting with recombinant vaccinia increases HPV-16 E7-specific T cell precursor frequencies of HPV-16 E7-expressing DNA vaccines.
Vaccine.
2000;
18
2015-2022
107
Chen C -H, Wang T -L, Hung C -F, Yang Y, Young R A, Pardoll D M, Wu T -C.
Enhancement of DNA vaccine potency by linkage of antigen gene to an HSP70 gene.
Cancer Res.
2000;
60
1035-1042
108
Chen C H, Ji H, Suh K W, Choti M A, Pardoll D M, Wu T C.
Gene gun-mediated DNA vaccination induces antitumour immunity against human papillomavirus type 16 E7-expressing murine tumour metastases in the liver and lungs.
Gene Ther.
1999;
6
1972-1981
109
Ji H, Wang T -L, Chen C -H, Hung C -F, Pai S, Lin K -Y, Kurman R J, Pardoll D M, Wu T -C.
Targeting HPV-16 E7 to the endosomal/lysosomal compartment enhances the antitumour immunity of DNA vaccines against murine HPV-16 E7-expressing tumours.
Hum Gene Ther.
1999;
10
2727-2740
110
Shi W, Bu P, Liu J, Polack A, Fisher S, Qiao L.
Human papillomavirus type 16 E7 DNA vaccine: Mutation in the open reading frame of E7 enhances specific cytotoxic T-lymphocyte induction and antitumour activity.
J Virol.
1999;
73
7877-7881
111
Greenstone H L, Nieland J D, de Visser K E, De Bruijn M L, Kirnbauer R, Roden R B, Lowy D R, Kast W M, Schiller J T.
Chimeric papillomavirus virus-like particles elicit antitumour immunity against the E7 oncoprotein in an HPV16 tumour model.
Proc Natl Acad Sci USA.
1998;
95
1800-1805
112
Peng S, Frazer I H, Fernando G J, Zhou J.
Papillomavirus virus-like particles can deliver defined CTL epitopes to the MHC class I pathway.
Virology.
1998;
240
147-157
113
Schafer K, Muller M, Faath S, Henn A, Osen W, Zentgraf H, Benner A, Gissmann L, Jochmus I.
Immune response to human papillomavirus 16 L1E7 chimeric virus-like particles: Induction of cytotoxic T cells and specific tumour protection.
Int J Cancer.
1999;
81
881-888
114
Borysiewicz L K, Fiander A, Nimako M, Man S, Wilkinson G W, Westmoreland D, Evans A S, Adams M, Stacey S N, Boursnell M E, Rutherford E, Hickling J K, Inglis S C.
A recombinant vaccinia virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy for cervical cancer.
Lancet.
1996;
347
1523-1527
115
Lin K -Y, Guarnieri F G, Staveley-O ’Carroll K F, Levitsky H I, August T, Pardoll D M, Wu T -C.
Treatment of established tumours with a novel vaccine that enhances major histocompatibility class II presentation of tumour antigen.
Cancer Res.
1996;
56
21-26
116
Meneguzzi G, Cerni C, Kieny M P, Lathe R.
Immunization against human papillomavirus type 16 tumour cells with recombinant vaccinia viruses expressing E6 and E7.
Virology.
1991;
181
62-69
117
Chen L, Ashe S, Brady W A, Hellstrom I, Hellstrom K E, Ledbetter J A, McGowan P, Linsley P S.
Costimulation of antitumour immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4.
Cell.
1992;
71
1093-1102
118
Zehbe I, Wilander E, Delius H, Tommasino M.
Human papillomavirus 16 E6 variants are more prevalent in invasive cervical carcinoma than the prototype.
Cancer Res.
1998;
58
829-833
119
Kast W M, Brandt R M, Drijfhout J W, Melief C J.
Human leukocyte antigen-A2.1 restricted candidate cytotoxic T lymphocyte epitopes of human papillomavirus type 16 E6 and E7 proteins identified by using the processing-defective human cell line T2.
J Immunother.
1993;
14
115-120
120
Ressing M E, Sette A, Brandt R M, Ruppert J, Wentworth P A, Hartman M, Oseroff C, Grey H M, Melief C J, Kast W M.
Human CTL epitopes encoded by human papillomavirus type 16 E6 and E7 identified through in vivo and in vitro immunogenicity studies of HLA-A*0201-binding peptides.
J Immunol.
1995;
154
5934-5943
121
Kaufmann A M, Gissmann L, Street D, Schreckenberger C, Hunter M, Qiao L.
Expression of CD80 enhances immunogenicity of cervical carcinoma cells in vitro.
Cellular Immunology.
1996;
169
246-251
122
Kaufmann A M, Gissmann L, Schreckenberger C, Qiao L.
Cervical carcinoma cells transfected with the CD80 gene elicit a primary CTL response specific for HPV 16 E7 antigens.
Cancer Gene Therapy.
1997;
4
377-382
123 Kather A, Ferrara A, Nonn M, Schinz M, Nieland J, Schneider A, Dürst M, Kaufmann A M. Identification of a Naturally Processed HLA-A*0201 HPV18 E7 T Cell Epitope by Tumor Cell Mediated in vitro Vaccination. Int J Cancer (in press)
124
Steller M A, Gurski K J, Murakami M, Daniel R W, Shah K V, Celis E, Sette A, Trimble E L, Park R C, Marincola F M.
Cell-mediated immunological responses in cervical and vaginal cancer patients immunized with a lipidated epitope of human papillomavirus type 16 E7.
Clin Cancer Res.
1998;
4
2103-2109
125
van Driel W J, Ressing M E, Kenter G G, Brandt R M, Krul E J, van Rossum A B, Schuuring E, Offringa R, Bauknecht T, Tamm-Hermelink A, van Dam P A, Fleuren G J, Kast W M, Melief C J, Trimbos J B.
Vaccination with HPV16 peptides of patients with advanced cervical carcinoma: Clinical evaluation of a phase I-II trial.
Eur J Cancer.
1999;
35
946-952
126
Ressing M E, van Driel W J, Brandt R M, Kenter G G, de Jong J H, Bauknecht T, Fleuren G J, Hoogerhout P, Offringa R, Sette A, Celis E, Grey H, Trimbos B J, Kast W M, Melief C J.
Detection of T helper responses, but not of human papillomavirus-specific cytotoxic T lymphocyte responses, after peptide vaccination of patients with cervical carcinoma.
J Immunother.
2000;
23
255-266
127
Munderspach L.
Wilczynski S, Roman L, Bade L, Felix J, Small LA, Kast WM, Fascio G, Marty V, Weber J. A phase I trial of a human papillomavirus (HPV) peptide vaccine for women with high-grade cervical and vulvar intraepithelial neoplasia who are HPV 16 positive.
Clin Cancer Res.
2000;
6
3406-3416
128
Zwaveling S, Ferreira Mota S C, Nouta J, Johnson M, Lipford G B, Offringa R, van der Burg S H, Melief C J.
Established human papillomavirus type 16-expressing tumours are effectively eradicated following vaccination with long peptides.
J Immunol.
2002;
169
350-358
129
Goldstone S E, Palefsky J M, Winnett M T, Neefe J R.
Activity of HspE7, a novel immunotherapy, in patients with anogenital warts.
Dis Colon Rectum.
2002;
45
502-507
130
de Jong A, O’Neil T, Khan A Y, Kwappenberg K M, Chrisholm S E, Whittle N R, Dobson J A, Jack L C, St Clair Roberts J A, Offringa R, van der Burg S H, Hickling J K.
Enhancement of human papillomavirus (HPV) type 16 E6 and E7-specific T-cell immunity in healthy volunteers through vaccination with TA-CIN, an HPV16 L2E6E7 fusion protein vaccine.
Vaccine.
2002;
20
3456-3464
131
Thompson H S, Davies M L, Holding F P, Fallon R E, Mann A E, O’Neil T, Roberts J S.
Phase I safety and antigenicity of TA-GW: A recombinant HPV6 L2E7 vaccine for the treatment of genital warts.
Vaccine.
1999;
17
40-49
132
Kaufmann A M, Nieland J, Schinz M, Gabelsberger J, Jochmus I, Gissmann L, Schneider A, Dürst M.
HPV16 L1/E7 chimeric virus-like particles induce specific HLA-restricted T cells in humans after in vitro vaccination.
Int J Cancer.
2001;
92
285-293
133
Chen C H, Wu T C.
Experimental vaccine strategies for cancer immunotherapy.
J Biomed Sci.
1998;
5
231-252
134
Cella M, Sallusto F, Lanzavecchia A.
Origin, maturation and antigen presenting function of dendritic cells.
Curr Opin Immunol.
1997;
9
10-16
135
Hart D N.
Dendritic cells: Unique leukocyte populations which control the primary immune response.
Blood.
1997;
90
3245-3287
136
Heufler C, Koch F, Schuler G.
Granulocyte/macrophage colony-stimulating factor and interleukin 1 mediate the maturation of murine epidermal Langerhans cells into potent immunostimulatory dendritic cells.
J Exp Med.
1988;
167
700-705
137
Inaba K, Steinman R M, Pack M W, Ya H, Inaba M, Sudo T, Wolpe S, Schuler G.
Identification of proliferating dendritic cell precursors in mouse blood.
J Exp Med.
1992;
175
1157-1167
138
Lyman S D, Jacobsen S EW.
c-kit ligand and flt3 ligand: Stem/progenitor cell factors with overlapping yet distinct activities.
Blood.
1998;
91
1101-1134
139
Romani N, Reider D, Heuer M, Ebner S, Kampgen E, Eibl B, Niederwieser D, Schuler G.
Generation of mature dendritic cells from human blood: An improved method with special regard to clinical applicability.
J Immunol Methods.
1996;
196
137-151
140
Mayordomo J I, Zorina T, Storkus W J, Zitvogel L, Garcia-Prats M D, DeLeo A B, Lotze M T.
Bone marrow-derived dendritic cells serve as potent adjuvants for peptide-based antitumour vaccines.
Stem Cells.
1997;
15
94-103
141
Schoell W M, Mirhashemi R, Liu B, Janicek M F, Podack E R, Penalver M A, Averette H E.
Generation of tumour-specific cytotoxic T lymphocytes by stimulation with HPV type 16 E7 peptide-pulsed dendritic cells: an approach to immunotherapy of cervical cancer.
Gynecol Oncol.
1999;
74
448-455
142
Santin A D, Hermonat P L, Ravaggi A, Chiriva-Internati M, Zhan D, Pecorelli S, Parham G P, Cannon M J.
Induction of human papillomavirus- specific CD4(+) and CD8(+) lymphocytes by E7-pulsed autologous dendritic cells in patients with human papillomavirus type 16- and 18-positive cervical cancer.
J Virol.
1999;
73
5402-5410
143 Nonn M, Schinz M, Zumbach K, Pawlita M, Schneider A, Dürst M, Kaufmann A M. Dendritic cell-based tumour vaccine for cervical cancer I: in vitro vaccination with recombinant protein-pulsed dendritic cells induces specific T cells to HPV16 E7 or HPV18 E7. J Cancer Res Clin Oncol (submitted 2002)
144
Murakami M, Gurski K J, Marincola F M, Ackland J, Steller M A.
Induction of specific CD8+ T-lymphocyte responses using a human papillomavirus-16 E6/E7 fusion protein and autologous dendritic cells.
Cancer Res.
1999;
59
1184-1187
145
Santin A D, Bellone S, Gokden M, Cannon M J, Parham G P.
Vaccination with HPV-18 E7-pulsed dendritic cells in a patient with metastatic cervical cancer.
N Engl J Med.
2002;
346
1752-1753
146 Ferrara A, Nonn M, Sehr P, Schreckenberger C, Pawlita M, Dürst M, Schneider A, Kaufmann A M. Dendritic cell-based tumour vaccine for cervical cancer II: results of a clinical pilot study in 15 individual patients. J Cancer Res Clin Oncol (submitted 2002)
147
Hallez S, Detremmerie O, Giannouli C, Thielemans K, Gajewski T F, Burny A, Leo O.
Interleukin-12-secreting human papillomavirus type 16-transformed cells provide a potent cancer vaccine that generates E7-directed immunity.
Int J Cancer.
1999;
81
428-437
148
Bubenik J, Simova J, Hajkova R, Sobota V, Jandlova T, Smahel M, Sobotkova E, Vonka V.
Interleukin 2 gene therapy of residual disease in mice carrying tumours induced by HPV 16.
Int J Oncol.
1999;
14
593-597
149
Chang E Y, Chen C -H, Ji H,Wang T -L, Hung K, Lee B P, Huang A YC, Kurman R J, Pardoll D M, Wu T -C.
Antigen-specific cancer immunotherapy using a GM-CSF secreting allogeneic tumour cell-based vaccine.
Int J Cancer.
2000;
86
725-730
150
Moss B.
Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety.
Proc Natl Acad Sci USA.
1996;
93
11341-11348
151
Kaufmann A M, Stern P L, Rankin E M, Sommer H, Nuessler V, Schneider A, Adams M, Onon T S, Bauknecht T, Wagner U, Kroon K, Hickling J, Boswell C M, Stacey S N, Kitchener H C, Gillard J, Wanders J, Roberts J St C, Zwierzina H.
Safety and immunogenicity of TA-HPV, a recombinant vaccinia virus expressing modified HPV16 and 18 E6 and E7 genes, in women with progressive cervical cancer.
Clin Cancer Res.
2002;
8
3676-3685
152 Davidson E, Tomlinson A, Stern P L, Dobson J, Jack L, Roberts J C, Boswell C, Hickling J, Kitchener H. A phase II trial to assess the safety, immunogenicity and efficacy of TA-HPV in patients with high grade vulvar intraepithelial neoplasia (VIN). 19th International Papillomavirus Conference, 2001, Florianopolis, Brazil
153
Frazer I H, Thomas R, Zhou J, Legatt G R, Dunn L, McMillan N, Tindle R W, Filgueira L, Manders P, Barnard P, Sharkey M.
Potential strategies utilised by papillomavirus to evade host immunity.
Immunol Rev.
1999;
168
131-142
154
Östör A G.
Natural history of cervical intraepithelial neoplasia: a critical review.
Int J Gynecol Pathol.
1993;
12
186-192
155
Helmerhorst T JM, Meijer C JLM.
Cervical cancer should be considered as a rare complication of oncogenic HPV infection rather than a STD.
Int J Gynecol Cancer.
2002;
12
235-236
156
Conner M E, Stern P L.
Loss of MHC class I expression in cervical carcinomas.
Int J Cancer.
1990;
46
1029-1034
157
Ritz U, Momburg F, Pilch H, Maeurer M J, Seliger B.
Deficient expression of components of the MHC class I antigen processing machinery in human cervical carcinoma.
Int J Oncol.
2001;
19
1211-1220
158
Hazelbag S, Fleuren G J, Baelde J J, Schuuring E, Kenter G G, Gorter A.
Cytokine profile of cervical cancer cells.
Gynecol Oncol.
2001;
83
235-243
159
Medema J P, de Jong J, Peltenburg L T, Verdegaal E M, Gorter A, Bres S A, Franken K L, Hahne M, Albar J P, Melief C J, Offringa R.
Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumours.
Proc Natl Acad Sci USA.
2001;
98
11515-11520
Dr. Andreas M. Kaufmann
Gynäkologische Molekularbiologie · Frauenklinik · FSU Jena
Bachstrasse 18
07743 Jena
Germany
Phone: +49/36 41/93 42 73
Fax: +49/36 41/93 42 16
Email: andreas.kaufmann@med.uni-jena.de