References
1a
Greenwell JF.
Benson HD.
Johnston JO.
Petrow V.
Steroids
1976,
27:
759
1b
Heiman AS.
Taraporewala IB.
McLean HM.
Hong D.
Lee HJ.
J. Pharm. Sci.
1990,
79:
617
1c
Manolagas SC.
Kousteni S.
Jilka RL.
Recent Prog. Horm. Res.
2002,
57:
385
1d
Lednieer D.
Contraception: Chemical Control of Fertility
Marcel Dekker;
New
York:
1969.
p.88
2
Silberberg SD.
Magleby KL.
Science
1999,
285:
1859
See for example:
3a
Quinkert G.
Del Grosso M.
Döring A.
Döring W.
Schenkel RI.
Bauch M.
Dambacher GT.
Bats JW.
Zimmermann G.
Dürner G.
Helv.
Chim. Acta
1995,
78:
1345
3b
Zhuang ZP.
Zhou WS.
Tetrahedron
1985,
41:
3633
3c
Kametani T.
Nemoto H.
Tetrahedron
1981,
37:
3
3d
Kametani T.
Pure
Appl. Chem.
1979,
51:
747
3e
Kametani T.
Nemoto H.
Ishikawa H.
Shiroyama K.
Fukumoto K.
J.
Am. Chem. Soc.
1976,
98:
3378
3f
Oppolzer W.
Roberts DA.
Bird TGC.
Helv. Chim. Acta
1979,
62:
2017
3g
Oppolzer W.
Bättig K.
Petrzilka M.
Helv.
Chim. Acta
1978,
61:
1945
3h
Funk RL.
Vollhardt KPC.
J.
Am. Chem. Soc.
1979,
101:
215
4a
Tietze LF.
Krahnert W.-R.
Chem.-Eur.
J.
2002,
8:
2116
4b
Tietze LF.
Petersen S.
Eur. J.
Org. Chem.
2001,
1619
4c
Tietze LF.
Krahnert W.-R.
Synlett
2001,
560
4d
Tietze LF.
Petersen S.
Eur. J.
Org. Chem.
2000,
1827
4e
Tietze LF.
Nöbel T.
Spescha M.
J. Am. Chem. Soc.
1998,
120:
8971
4f
Tietze LF.
Nöbel T.
Spescha M.
Angew. Chem., Int. Ed. Engl.
1996,
35:
2259
5a
Hajos ZG.
Parrish DR.
J. Org. Chem.
1974,
39:
1615
5b
Eder U.
Sauer G.
Wiechert R.
Angew.
Chem., Int. Ed. Engl.
1971,
10:
496
6a
Tietze LF.
Subba Rao PSV.
Synlett
1993,
291
6b
Kim D.
Lee YK.
Tetrahedron Lett.
1991,
32:
6885
6c
Satoh S.
Sodeoka M.
Sasai H.
Shibasaki M.
J. Org. Chem.
1991,
56:
2278
6d
Hutchinson H.
Money T.
J. Chem. Soc., Chem. Commun.
1986,
288
6e
Takahashi T.
Okumoto H.
Harada N.
Tsuji J.
J. Org. Chem.
1984,
49:
948
6f
Takahashi T.
Okumoto H.
Tsuji J.
Tetrahedron Lett.
1984,
25:
1925
7a
Groth U.
Taapken T.
Liebigs
Ann. Chem.
1994,
669
7b
Groth U.
Köhler T.
Taapken T.
Tetrahedron
1991,
47:
7583
7c
Daniewski AR.
Piotrowska E.
Wojciechowska W.
Liebigs Ann. Chem.
1989,
1061
7d
Daniewski AR.
Kiegiel J.
Synth. Commun.
1988,
18:
115
7e
Stork G.
Soccomano NA.
Tetrahedron Lett.
1987,
28:
2087
8
Arseniyadis S.
Rodriguez R.
Dorado MM.
Alvez RB.
Ouazzani J.
Ourisson G.
Tetrahedron
1994,
50:
8399
9a
Helmchen G.
J. Organomet. Chem.
1999,
576:
203
9b
Hayashi T.
J.
Organomet. Chem.
1999,
576:
195
9c
Helmchen G.
Pfaltz A.
Acc. Chem. Res.
2000,
33:
336
9d
Johannsen M.
Jorgensen KA.
Chem. Rev.
1998,
98:
1689
9e
Tsuji J.
Mandai T.
Synthesis
1996,
1
9f
Heumann A.
Reglier M.
Tetrahedron
1995,
51:
975
9g
Tsuji J.
Palladium Reagents and Catalysts: Innovations in
Organic Synthesis
Wiley;
New York:
1995.
9h
Trost BM.
Angew. Chem., Int. Ed. Engl.
1989,
28:
1173
10
Haynes RK.
Vonwiller SC.
Hambley TW.
J. Org. Chem.
1989,
54:
5162
11
Experimental Details
for the Tsuji-Trost-Reaction:
To a degassed
solution of 10 (1.70 g, 4.31 mmol)in dioxane (15
mL) were added Pd(OAc)2 (10 mg, 0.045 mmol) and P(n-Bu)3 (0.040 mL, 0.18 mmol).
The reaction mixture was stirred for 45 min at 90 °C.
Then the reaction mixture was allowed to attain r.t. and diluted
with Et2O and H2O. The organic layer was washed
with brine, dried over Na2SO4, and concentrated
in vacuo. Purification by silica gel column chromatography(pentane)
afforded 1.06 g (70%) of 11 and 12 (4:1 mixture) as colourless oil, which
was used for the next step without separation. Separation of 12 is possible using pentane/ethyl
acetate (100:1), but easier at a later stage.
12
Corey EJ.
Schmidt G.
Tetrahedron Lett.
1979,
399
13
Compound 3:
Rf = 0.11 (pentane/ethyl
acetate 10:1), [α]D
20 = +56.0
(c 1, CHCl3). 1H
NMR (300 MHz, CDCl3): δ = 0.76
(s, 3 H), 1.14 (s, 9 H), 1.14-1.69 (m, 5 H), 1.86-2.05
(m, 1 H), 2.10-2.20 (m, 1 H), 2.32 (dd, J = 11.9,
7.0 Hz, 1 H), 3.54 (dd, J = 9.0,
6.8 Hz, 1 H), 4.41 (mc, 1 H), 5.60 (dt, J = 9.7,
2.6 Hz, 1 H), 5.73 (dt, J = 9.7,
1.5 Hz, 1 H). 13C NMR (50.3 MHz, CDCl3): δ = 10.93,
23.72, 27.98, 30.32, 43.08, 44.08, 44.76, 67.29, 71.65, 78.27, 128.80,
129.60.
Compound 4: Rf = 0.21
(pentane/ethyl acetate 10:1), [α]D
20 = +24.3
(c 1, CHCl3). 1H
NMR (300 MHz, CDCl3): δ = 0.83
(d, J = 1.0
Hz, 3 H), 1.14 (s, 9 H), 1.53-1.69 (m, 2 H), 1.78-1.90
(m, 1 H), 2.01-2.14 (m, 1 H), 2.14 (dd, J = 16.2,
0.9 Hz, 1 H), 2.50-2.61 (m, 1 H), 2.60 (d, J = 16.2 Hz,
1 H), 3.71 (dd, J = 8.9,
7.0 Hz, 1 H), 5.96 (ddd, J = 9.9, 3.1,
0.8 Hz, 1 H), 6.81 (dd, J = 9.9,
2.3 Hz, 1 H). 13C NMR (50.3 MHz, CDCl3): δ = 11.95,
23.88, 28.54, 31.30, 44.32, 46.76, 52.08, 72.63, 78.70, 129.60,
149.80, 200.60.