Fortschr Neurol Psychiatr 2003; 71(1): 24-36
DOI: 10.1055/s-2003-36684
Originalarbeit
© Georg Thieme Verlag Stuttgart · New York

Die HPA-Achse als mögliches Bindeglied zwischen Depression, Diabetes mellitus und kognitiven Störungen

The HPA-Axis as a Possible Link Between Depression, Diabetes mellitus and Cognitive DysfunctionS.  Prestele1 , J.  Aldenhoff1 , J.  Reiff1
  • 1Universitätsklinikum Kiel, Klinik für Psychiatrie und Psychotherapie
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
16. Januar 2003 (online)

Zusammenfassung

Beim Diabetes mellitus und bei der Depression ist eine Überaktivität der Hypothalamus-Hypophysen-Nebennierenrinden-Achse (HPA-Achse) mit konsekutiver Hyperkortisolämie beschrieben. Eine Hyperkortisolämie ist mit einer Beeinträchtigung kognitiver Funktionen assoziiert. Weiterhin ist bekannt, dass diese neuroendokrinologische Störung zu einer Insulinresistenz führen und eine gute Blutzuckereinstellung bei Diabetikern deutlich erschweren kann. Ein Zusammenhang zwischen kognitiven und depressiven Störungen beim Diabetes mellitus mit einer Überfunktion der HPA-Achse ist wahrscheinlich. Eine Normalisierung der HPA-Achse könnte zu einer Besserung beider Störungsaspekte führen. Eine Mitbehandlung der Depression könnte via HPA-Achsen-Normalisierung eine erleichterte Blutzuckereinstellung und verbesserte kognitive Leistungen nach sich ziehen. Die Überprüfung dieser Zusammenhänge durch Studien ist notwendig und von klinischer Bedeutung.

Abstract

Patients suffering from diabetes mellitus and depressive patients show a hyperactivity of the hypothalamic-pituitary-adrenocortical axis (HPA-axis) with hypercortisolemia. Hypercortisolemia is associated with cognitive dysfunction. These neuroendocrinological disturbances can cause an insulin resistance syndrome which complicates the regulation of blood glucose. Cognitive and depressive disorders in patients with diabetes mellitus might be associated with a hyperactivity of the HPA-axis. By normalising the HPA-axis both disorders could be improved. In addition, one can expect that antidepressive treatment with normalization of the HPA-axis could improve the metabolic situation and cognitive dysfunction. There is need for further research to study the associations between depression, diabetes mellitus and cognitive dysfunction.

Literatur

  • 1 Cameron O G, Kronfol Z, Carroll B J. Hypothalamic-pituitary-adrenocortical activity in patients with diabetes mellitus.  Arch Gen Psychiatry. 1984;  41 1090-1095
  • 2 Hudson J, Hudson M S, Rothschild A J. et al . Abnormal results of dexamethason suppression tests in nondepressed patients with diabetes mellitus.  Arch Gen Psychiatry. 1984;  41 1086-1089
  • 3 McCarty M F. Enhancing central and peripheral insulin activity as a strategy for the treatment of endogenous depression - an adjuvant role for chromium picolinate?.  Medical Hypotheses. 1994;  43 247-252
  • 4 Roy M, Roy A, Gallucci W T. et al . The ovine Corticotropin-releasing hormone-stimulation test in type 1 diabetic patients and controls. suggestion of mild chronic hypercortisolism.  Metabolism. 1993;  42(6) 696-700
  • 5 Berger M, Angenendt J, Stieglitz R D. Psychiatrie und Psychotherapie. München: Urban & Schwarzenberg 1999
  • 6 Connor T J, Leonard B E. Depression, stress and immunological activation : the role of cytokines in depressive disorders.  Life Sciences. 1998;  62(7) 583-606
  • 7 Dinan T G. Glucocorticoids and the genesis of depressive illness - a psychological modell.  Brit Jour of Psychiatry. 1994;  164 365-371
  • 8 Lustman P J, Griffith L S, Freedland K E. et al . Cognitive behavior therapy for depression in Type 2 diabetes mellitus.  Ann of Inter Med. 1989;  129(8) 613-620
  • 9 Tucker M E. Depression complicates and may precede diabetes.  Clinical Psychiatry News. 1999;  27(9) 28
  • 10 Lustman P J, Griffith L S, Clouse R E. Depression in adults with diabetes. Results of 5-year-follow-up study.  Diabetes Care. 1988;  11 605-612
  • 11 Lustman P J, Griffith L S, Clouse R E. et al . Psychiatric illness in diabetes, relationship to symptoms and glucose control.  J Nerv Ment Dis. 1986;  174 736-742
  • 12 Baxter L R, Schwartz J M, Phelps M E. et al . Reduction of prefrontal cortex glucose metabolism common to three types of depression.  Arch Gen Psychiatry. 1989;  46 243-250
  • 13 Lustman P J, Harper G W. Nonpsychiatric physicians' identification and treatment of depression in patients with diabetes.  Compr Psychiatry. 1987;  28 22-27
  • 14 Lustman P J, Griffith L S, Freedland K E. et al . The course of major depression in diabetes.  Gen Hosp Psychiatry. 1997;  19 138-143
  • 15 Bellush L L, Rowland N E. Stress and behavior in streptozocin diabetic rats. Biochemical correlates of passive avoidance learning.  Behav Neurosci. 1989;  103 144-150
  • 16 Weinger K, Jacobsen A M, Draelos M T. et al . Blood glucose estimation and symptoms during hyperglycemia and hypoglycemia in patients with insulin-dependent diabetes mellitus.  Am J Med. 1995;  98 22-31
  • 17 Winokur A, Maislin G, Phillips J L. Insulin resistance after oral glucose tolerance testing in patients with major depression.  Am J Psychiatry. 1988;  145(3) 325-330
  • 18 Okamura F, Tashiro A, Utumi A. et al . Insulin resistance in patients with depression and its changes during the clinical course of depression: minimal model analysis.  Metabolism. 2000;  49 1255-1260
  • 19 Raadsheer F C, Hoogendijk W JG, Stam F C. et al . Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients.  Neuroendocrinology. 1994;  60 436-443
  • 20 Holsboer F. Stress, hypercortisolism and corticosteroid receptors in depression: implications for therapy.  J of Affective Disorder. 2001;  62 77-91
  • 21 Reul J MHM, Labeur M S, Grigoriadis D E. et al . Hypothalamic-pituitary-adrenocortical axis changes in the rat after long-term treatment with the reversible monoamine oxidase-A inhibitor moclobemide.  Neuroendocrinology. 1994;  60 509-519
  • 22 Owens M J, Nemeroff C B. The physiology and pharmacology of corticotropin-releasing factor.  Pharmacol Rev. 1992;  43 425-473
  • 23 Liebsch G, Landgraf R, Engelmann M. et al . Differential behavioural effects of chronic infusion of CRH1 and CRH2 receptor antisense oligonucleotides into the rat brain.  J of Psych Research. 1999;  33(2) 153-163
  • 24 Holsboer F. The rationale for corticotropin-releasing hormone receptor (CRH-R) antagonists to treat depression and anxiety.  J of Psych Research. 1998;  33 181-214
  • 25 Timpl P, Spanagel R, Holsboer F. et al . Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor.  Nat Genet. 1998;  19(2) 162-166
  • 26 Müller M B, Landgraf R, Wurst W. et al . Selective activation of the hypothalamic vasopressinergic system in mice deficient for the corticotropin-releasin hormone receptor 1 is dependent on glucocorticoids.  Endocrinology. 2000;  141(11) 4262-4269
  • 27 Brown E S, Rush A J, McEwen B S. Hippocampal remodeling and damage by corticosteroids. Implications for mood disorders.  Neuropsychopharmacology. 1999;  21(4) 474-484
  • 28 Schmider J, Holsboer F, Heuser I. et al . Combined dexamethason/corticotropin-releasing hormone test in acute and remitted manic patients in acute depression, and in normal controls.  Biol Psychiatry. 1995;  38 797-802
  • 29 Heuser I, Yassouridis A, Holsboer F. The combined dexamethason/CRH test: a refined laboratory test for psychiatric disorders.  J Psych Research. 1994;  28 341-356
  • 30 Cameron O G, Thomas G, Tioncgo D. et al . Hypercortisolism in diabetes mellitus.  Diabetes Care. 1987;  10(5) 662-664
  • 31 Würzburger M, Prelevic G, Sonksen P. et al . The effekt of improved blood glucose on growth hormone and cortisol secretion in insulin-dependent diabetes mellitus.  Clin Endocrinol. 1990;  32 787-792
  • 32 Björntorp P. Neuroendocrine perturbations as a cause of insulin resistance.  Diabetes Metab Res Rev. 1999;  15(6) 427-441
  • 33 Rizza R A, Mandarino L J, Gerich J E. Cortisol-induced insulin resistance in man: impaired suppression of glucose production and stimulation of glucose utilization due to a postreceptor defect of insulin action.  J of Clin Endocrin and Metab. 1982;  54(1) 131-138
  • 34 Björntorp P. Body fat distribution, insulin resistance, and metabolic disease.  Nutrition. 1997;  13(9) 795-803
  • 35 Brüning J C, Gautam D, Burks D J. et al . Role of brain insulin receptor in control of body weight and reproduction.  Science. 2000;  289(22) 2122-2125
  • 36 Baura G D, Foster D M, Kaiyala K. et al . Insulin transport from plasma into the central nervous system is inhibited by dexamethason in dogs.  Diabetes. 1996;  45 86-90
  • 37 Nosadini R, Del Prato S, Tiengo A. et al . Insulin resistance in Cushing's syndrome.  J of Clin Endocrin and Metab. 1983;  57(3) 529-536
  • 38 Fantus I, Ryan J, Hizuka N. et al . The effect of glucocorticoids on the insulin-receptor: an in vivo and in vitro study.  J Clin Endocrin and Metab. 1981;  52 953
  • 39 Glassman A H, Shapiro P A. Depression and the course of coronary artery disease.  Am J Psychiatry. 1998;  155(1) 4-11
  • 40 Landfield P W, Eldridge J C. The glucocorticoid hypothesis of age-related hippocampal neurodegeneration: role of dysregulated Calcium.  Ann NY Academy of Sciences. 1994;  746 308-326
  • 41 McEwen B S. Stress and the aging Hippocampus.  Frontiers in Neuroendocrinology. 1999;  20 49-70
  • 42 Sapolsky R M, Krey L C, McEwen B S. The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis.  Endocr Rev. 1986;  7 284-301
  • 43 Rasmussen T, Schliemann T, Sorensen J C. et al . Memory impaired aged rats: no loss of principal hippocampal and subicular neurons.  Neurobiol Aging. 1996;  17 143-147
  • 44 Sapolsky R M, Uno H, Rebert C S. et al . Hippocampal damage is associated with prolonged glucocorticoid exposure in primates.  Journal of Neuroscience. 1990;  10 2897-2902
  • 45 Hassan A HS, Patchev V K, von Rosenstiel P. et al . Plasticity of hippocampal corticosteroid receptors during aging in the rat.  Faseb. 1999;  13 115-122
  • 46 Schmidt T J, Meyer A S. Autoregulation of corticosteroid receptors. How, when, where, and why?.  Receptor. 1994;  4 229-257
  • 47 Hassan A HS, von Rosenstiel P, Patchev V K. et al . Exacerbation of apoptosis in the dentate gyrus of the aged rat by dexamethasone and the protective role of corticosterone.  Exp Neurol. 1996;  140 43-52
  • 48 McCormick C M, McNamara M, Mukhopadhyay S. et al . Acute corticosterone replacement reinstates performance on spatial and nonspatial memory tasks 3 months after adrenalectomy despite degeneration in the dentate gyrus.  Behav Neurosci. 1997;  111(3) 518-531
  • 49 Margarinos A M, McEwen B S, Flügge G. et al . Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews.  J Neuroscience. 1996;  16(10) 3534-3540
  • 50 Horner H, Packan D, Sapolsky R. Glucocorticoids inhibit glucose transport in hippocampal neurons and glia.  Neuroendocrinology. 1990;  52 57-64
  • 51 Wickelgren I. Tracking Insulin to the mind.  Science. 1998;  280(24) 517-519
  • 52 Daniel P M, Love E R, Pratt O E. The influence of insulin upon the metabolism of glucose by the brain.  Proc Roy Soc London Series B Biological Sciences. 1977;  196 85-104
  • 53 Holden R J. The role of brain Insulin in the neurophysiology of serious mental disorders. Review.  Medical Hypotheses. 1999;  52(3) 193-200
  • 54 Taha C, Mitsumoto Y, Liu Z. et al . The insulin-dependent biosynthesis of GLUT1 and GLUT3 glucose transporters in L6 muscle cells is mediated by distinct pathways. Roles of p21ras and pp70 S6 kinase.  J Biol Chem. 1995;  270 24 678-24 681
  • 55 Craft S, Newcomer J W, Kanne S. et al . Memory improvement following induced hyperinsulinemia in Alzheimer's disease.  Neurobiol Aging. 1996;  17 123-130
  • 56 Brass B J, Nonner D, Barret J N. Differential effects of insulin on choline acetyltransferase and glutamic acid decarboxylase activities in neuron-rich striatal cultures.  J Neurochem. 1992;  59 415-424
  • 57 Zunker P, Schick A, Buschmann H-C. et al . Hyperinsulinism and cerebral microangiopathy.  Stroke. 1996;  27(2) 219-223
  • 58 Vanhanen M, Kuusisto J, Koivisto K. et al . Type 2 diabetes and cognitive function in a non-demented population.  Acta Neurol Scand. 1999;  100 97-101
  • 59 Unger J, McNeill T H, Moxley R T. Distribution of insulin receptor-like immunoreactivity in the rat forebrain.  Neuroscience. 1989;  31 143-157
  • 60 Kalmijn S, Feskens E JM, Launer L J. et al . Glucose intolerance, hyperinsulinaemia and cognitive function in a general population of elderly men.  Diabetologia. 1995;  38 1096-1102
  • 61 Ferrannini E, Haffner S M, Stern M P. et al . Hyperinsulinaemia: the key feature of cardiovascular and metabolic syndrome.  Diabetologia. 1991;  34 416-422
  • 62 De Fronzo R A, Ferrannini E. Insulin resistance: a multifaceted syndrome responsible for NIDDM, hypertension, dyslipidemia and atherosclerotic cardiovascular disease.  Diabetes Care. 1991;  14 173-194
  • 63 Barrett-Connor E L, Cohn B A, Edelstein S L. et al . Why is diabetes mellitus a stronger risk factor for fatal ischaemic heart disease in women than in men?.  JAMA. 1991;  265 627-631
  • 64 Mac Leod K M, Hepburn D A, Deary I J. et al . Regional cerebral blood flow in IDDM patients: effects of diabetes and recurrent severe hypoglycaemia.  Diabetologia. 1994;  37 257-263
  • 65 Strachan M WJ, Ewing F ME, Brian M. et al . Is type 2 diabetes associated with an increased risk of cognitive dysfunction?.  Diabetes Care. 1997;  20(3) 438-445
  • 66 Bellush L L, Reid S G. Altered behavior and neurochemistry during short-term insulin withdrawal in streptozotocin-induced diabetic rats.  Diabetes. 1991;  40 217-222
  • 67 Lustman P J, Griffith L S, Gavard J A. et al . Depression in adults with diabetes.  Diabetes Care. 1992;  15 1631-1639
  • 68 Lustman P J, Harper G W, Griffith L S. et al . Use of the diagnostic interview schedule in patients with diabetes mellitus.  J Nerv Ment Dis. 1986;  174 743-746
  • 69 Choi D W. Glutamate neurotoxicity and diseases of the nervous system.  Neuron. 1988;  1 623-634
  • 70 Sjesjö B K, Bengtsson F. Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischaemia hypoglycaemia and spreading depression, a unifying hypothesis.  J Cereb Blood Flow Metab. 1989;  9 127-140
  • 71 Araki N, Greenberg J H, Sladky J T. The effect of hyperglycaemia on intracellular calcium in stroke.  J Cereb Blood Flow Metab. 1992;  12 469-476
  • 72 Chabot C, Massicotte G, Milot M. Impaired modulation of AMPA receptors by calcium - dependent processes in streptozotocin - induced diabetic rats.  Brain Res. 1997;  768 249-256
  • 73 Nitsch R, Hoyer S. Local action of the diabetogenic drug, streptozotocin, on glucose and energy metabolism in rat brain cortex.  Neurosci Letter. 1991;  128 199-202
  • 74 Newcomer J W, Selke G, Melson A K. et al . Decreased memory performance in healthy humans induced by stress-level cortisol treatment.  Arch Gen Psychiatry. 1999;  56 527-533
  • 75 Brown R G, Scott L C, Bench C J. et al . Cognitive function in depression: its relationship to the presence and severity of intellectual decline.  Psychological Medicine. 1994;  24 829-847
  • 76 Austin M P, Mitchell P, Wilhelm K. et al . Cognitive function in depression. A distinct pattern of frontal impairment in melancholia?.  Psychological Medicine. 1999;  29 73-85
  • 77 Austin M P, Ross M, Murray C. et al . Cognitive function in major depression.  J of Affective Disorders. 1992;  25 21-30
  • 78 Degl'Innocenti A, Agren H, Bäckman L. Executive deficits in major depression.  Acta Psych Scand. 1998;  97 182-188
  • 79 Ilsley J E, Moffoot A PR, O'Carroll R E. An analysis of memory dysfunction in major depression.  J of Affective Disorders. 1995;  35 1-9
  • 80 Fossati P, Deweer B, Raoux N. et al . Les troubles de la recuperation mnesique, un argument en faveur d'un dysfonctionnement des structures sous-cortico-frontales dans la depression.  L'Encephale. 1995;  11 295-305
  • 81 Kalska H, Punamäki R-L, Mäkinen-Pelli T. et al . Memory and metamemory functions among depressed patients.  Applied Neuropsychology. 1999;  6(2) 96-107
  • 82 Deptula D, Manevitz A, Yozawitz A. Asymmetry of recall in depression.  J Clin Exp Neuropsychology. 1991;  13(6) 854-170
  • 83 Yaffe K, Blackwell T, Gore R. et al . Depressive symptoms and cognitive decline in nondemented elderly women.  Arch Gen Psychiatry. 1999;  56 425-430
  • 84 Bassuk S S, Berkman L S, Wypij D. Depressive symptomatology and incident cognitive decline in an elderly community sample.  Arch Gen Psychiatry. 1989;  55 1073-1081
  • 85 Gregg E W, Yaffe K, Cauley J A. et al . Is diabetes associated with cognitive impairment and cognitive decline among older women?.  Arch Intern Medicine. 2000;  160(2) 174-180
  • 86 Burt D B, Zembar M J, Niederehe G. Depression and memory impairment-a metaanalysis of the association, its pattern and specifity.  Psychol Bull. 1995;  117(2) 285-305
  • 87 Christensen H. et al . A quantitative review of cognitive deficits in depression and Alzheimer-type dementia.  J Int-Neuropsychol Soc. 1997;  3(6) 631-651
  • 88 Deijen J B, Orlebeke J F, Rijdijk F V. Effect of depression on psychomotor. Skills, eye movements and recognition memory.  J Affect Disord. 1993;  29(1) 33-40
  • 89 Ivemeyer D, Heuser I. Kognitive Tests bei Diabetikern. 
  • 90 Meneilly G S, Cheung E, Tessier D. et al . The effect of improved glycemic control on cognitive functions in the elderly patient with diabetes.  J of Gerontology Medical Science. 1993;  48(4) M117-M121
  • 91 Purcell R, Maruff P, Kyrios M. et al . Neuropsychological function in young patients with unipolar major depression.  Psychol Med. 1997;  27(6) 1277-1285
  • 92 Lemelin S, Baruch P, Vincent A. et al . Attention disturbance in clinical depression. Deficient distractor inhibition or processing resource deficit?.  J Nerv Ment Dis. 1996;  184(2) 114-121
  • 93 Lesser I M, Boone K B, Mehringer C M. et al . Cognition and white matter hyperintensities in older depressed patients.  Am J Psychiatry. 1996;  153(10) 1280-1287

Dr. J. Reiff

Klinik für Psychiatrie und Psychotherapie · Universitätsklinik der CAU zu Kiel

Niemannsweg 147

24105 Kiel

eMail: jreiff@psychiatry.uni-kiel.de