Subscribe to RSS
DOI: 10.1055/s-2003-36780
An Efficient Route to Novel 2-(Salicylmethylidine)imidazolidines and (Salicylmethylidene)hexahydropyrimidines through Reactions of 2-(N-Methylanilino)-3-formylchromone with Aliphatic Diamines
Publication History
Publication Date:
22 January 2003 (online)
Abstract
Contrary to the reactions of 2-(N-methylanilino)-3-formylchromones (3) with aliphatic/aromatic primary amines, including o-phenylenediamine, which involve nucleophilic substitution at C2 and/or condensation with the 3-formyl function, the reactions of 3 with aliphatic diamines such as ethylenediamine and 1,3-diaminopropane proceed through sequential attack by both amino functions at C2 in 3. The latter reactions afford, through nucleophilic substitution of the N-methylanilino moiety followed by chromone ring opening, novel potentially biologically active, 2-(formyl-salicyl-methylidene)imidazolidines (7a-c) and 2-(formyl-salicyl-methylidene)hexahydropyrimidines (7d-f) in high yields.
Key words
imidazolidines - hexahydropyrimidines - chromones - nucleophilic substitution - diamines
-
1a
Silverman RB. In Organic Chemistry of Drug Design and Drug Action Academic Press Inc.; San Diego: 1992. Chap. 2. p.4-50 -
1b
Comprehensive
Medicinal Chemistry
Vol. 4:
Hansch C.Sammes PG.Taylor JB. Pergamon Press; London: 1990. -
1c
Musser JH. In Medicinal Chemistry for the 21st CenturyWermuth CG. Blackwell Scientific Publications; Oxford: 1992. p.25-38 -
1d
Austel V. In Modern Drug ResearchMartin YC.Kutter E.Austel V. Marcell Dekker; New York: 1989. p.243-307 -
1e
Burger A. In Burgers Medicinal Chemistry and Drug Discovery 5th ed.,Vol. 1:Wolf ME. John Wiley and Sons; New York: 1996. Chap. 1. p.3-8 -
2a
Thompson LA.Ellman JA. Chem. Rev. 1996, 96: 555 -
2b
Fruchtel JS.Jung G. Angew. Chem., Int. Ed. Engl. 1996, 35: 17 -
2c
Nezfi A.Ostresh JM.Houghten RA. Chem. Rev. 1997, 97: 449 -
2d
Robert GF. J. Comb. Chem. 2000, 2: 195 -
3a
Comprehensive Medicinal Chemistry
Vol.
6.:
Hansch C.Sammes PG.Taylor JB. Pergamon Press; London: 1990. -
3b
Lednicer D. Strategies for Organic Drug Synthesis and Design John Wiley and Sons; New York: 1998. p.185-241 -
3c
Timmerman PBM.Smith RD. In Burgers Medicinal Chemistry and Drug Discovery 5th ed.,Vol. 2:Wolf ME. John Wiley and Sons; New York: 1996. p.265-321 -
3d
Michael MC.Schafers R. J. Cardiovasc. Pharmacol. 1992, 29 (Suppl .4): S24 -
3e
Safar ME. Am. J. Med. 1989, 87 (Suppl. 3C): 24S -
3f
Robinson CP. Drugs Today 1988, 24: 557 -
3g
Timmerman PBM.Van Zwieten PA. Eur. J. Med. Chem. 1980, 15: 233 -
3h
Houston MC. Prog. Cardiovasc. Dis. 1981, 23: 337 -
3i
Stump DC.Macfarlane DE. J. Lab. Clin. Biol. Res. 1983, 102: 779 -
3j
U’Prichard DC. Prog. Clin. Biol. Res. 1981, 71: 53 -
3k
Rout B.Leclerc G. Bull. Soc. Chim. Fr. 1979, 520 -
3l
Haron DWG.Shank RG. Lancet 1981, 1: 351 -
3m
Haron DWG.Shank RG. Eur. Heart J. 1985, 6: 722 -
3n
Heidenreich O.Fuelgraff G.Baumeister L.Schmiz K. Arch. Expt. Pathol. Pharmakol. 1964, 249: 432 -
3o
Heidenreich O.Baumeister L.Fuelgraff G.Keller P.Kook Y. Arch. Int. Pharmadyn. 1965, 156: 348 -
3p
Outt PE.Ares JJ.Roberts GE.Wang X.Cupps TL.Wireko FC. J. Org. Chem. 1998, 63: 5762 -
3q
Rosatti GF.Polleto MG. Farmaco 1966, 21: 204 -
3r
Campbell WR.Polter DE. Prog. Neuro Psych. Biol. Psych. 1994, 18: 1051 -
3s
Peckkhold JC. Curr. Ther. Res. 1980, 27: 111 -
4a
Timmerman PBM.Van Zwieten PA. J. Med. Chem. 1977, 20: 1636 -
4b
Timmerman PBM.Van Zwieten PA. Eur. J. Med. Chem. 1980, 15: 233 -
4c
Velly J. J. Pharmacol. 1977, 8: 351 -
4d
Kamitani T.Kamamoto M.Truzioka K.Terai T.Minovu O.Ono T.Kikuchi K.Kumada S. Jpn. J. Pharmacol. 1985, 39: 251 -
4e
Biedermann J,Borbe H,Graf E,Hirlboll G, andProp G. inventors; German Patent . DE 3,407.509; Chem. Abstr., 1986, 104, 15084v - 5
Yu Y.Ostresh JM.Houghten RA. J. Org. Chem. 2002, 67: 3138 -
6a
Ishar MPS.Kumar K.Singh R. Tetrahedron Lett. 1998, 39: 6547 -
6b
Ishar MPS.Kumar K. Tetrahedron Lett. 1999, 40: 175 -
6c
Ishar MPS.Singh G.Kumar K.Singh R. Tetrahedron 2000, 56: 7817 -
6d
Singh G.Singh R.Girdhar NK.Ishar MPS. Tetrahedron 2002, 58: 2471 -
6e
Singh, G.; Singh, L.; Ishar, M. P. S. Tetrahedron 2002, 58, in press.
-
8a
2-(Formyl-salicyl-methylidene)imidazolidine (7a): Colorless crystalline solid, mp 265-266 °C (acetone). UV (MeOH): 362.4, 263, 228.4 nm. IR (KBr): 3310 (s), 3118 (b), 1672 (HC=O), 1625 (C=O), 1602, 1533, 1452, 1434
cm-1. 1H NMR (200 MHz, DMSO-d 6): δ = 9.18 (overlapping singlets, 2 H, NH, OH), 8.94 (s, 1 H, HC=O), 8.30 (s, 1 H, NH), 7.22 (dt, 1 H, J = 8.61, 2.35 Hz, C4′-H), 7.03 (dd, 1 H, J = 8.29 Hz, 1.69, C6′-H), 6.80-6.76 (m, 2 H, C3′-H and C5′-H), 3.63 (s, 4 H, N-CH2 × 2). MS: m/z (%) = 230 (1) [M+ - 2], 214 (1.5), 213 (3), 205 (5), 204 (29), 203 (8), 84 (100), (Found: C, 62.28; H, 5.11; N, 12.34. C12H12N2O3 requires C, 62.06; H, 5.21; N 12.06 %).
2-[(5-Chlorosalicyl)-formyl-methylidene]imidazolidine (7b): Colorless crystalline solid, mp 271-272 °C (acetone). UV (MeOH): 262, 223 nm. IR (KBr): 3350 (b), 3100 (b), 1668 (HC=O), 1619 (C=O), 1595, 1556, 1532, 1541 cm-1. 1H NMR (300 MHz, DMSO-d 6): δ = 9.75 (br s, 1 H, OH), 9.21 (br s, 2 H, NH × 2), 9.10 (s, 1 H, CHO), 7.15 (dd, 1 H, J = 8.61, 2.35 Hz, C4′-H), 7.08 (d, 1 H, J = 2.30 Hz, C6′-H), 6.85 (d, 1 H, J = 8.69 Hz, C3′-H), 3.77 (s, 4 H, N-CH2 × 2). 13C NMR (75 MHz, DMSO-d 6): δ = 190.43 (C=O), 188.06 (CHO), 163.43 (C2), 152.69 (C2), 129.72 (C1′), 129.31 (CH), 127.67 (CH), 122.59 (C5′), 117.25 (CH), 99.65 (quat.), 42.43 (N-CH2). Mass (FAB+): m/z (%) = 269 (31) [(M + H)+ + 2 (37Cl)], 268 (22) [(M + H)+ + 1], 267 (100) [(M + H)+ for 35Cl], 266 (36), 249 (37), 155 (18), 154 (93), 140 (30), 139 (24), 138 (45), 137 (68), (Found: C, 53.87; H, 4.01; N, 10.81. C12H11N2O3Cl requires C, 54.05; H, 4.16; N 10.50%].
2-[Formyl-(5-Methylsalicyl)-methylidene]imidazolidine (7c): Colorless crystalline solid, mp 267-269 °C (acetone). UV (CHCl3): 324, 287, 267.5, 256 nm. IR (KBr): 3290 (b), 3060 (b), 1660 (HC=O), 1622 (C=O), 1580, 1520, 1500, 1428, 1392, 1378, 1331, 1288, 1261 cm-1. 1H NMR (200 MHz, CDCl3-DMSO-d 6, 8:2): δ = 9.75 (br s, 1 H, -OH), 9.33 (s, 1 H, CHO), 9.24 (br s, 2 H, NH × 2), 7.10-7.06 (m, 2 H, arom.-Hs), 6.80 (d, 1 H, J = 8.09 Hz, C3′-H), 3.82 (s, 4 H, N-CH2 × 2), 2.26 (s, 3 H, Ar-CH3). MS: m/z (%) = 245 (8) [M+ - 1], 243 (9), 188 (11), 169 (100), 111 (60), 94 (41), 83 (47), 71 (78), (Found: C, 63.18; H, 5.51; N, 11.64. C13H14N2O3 requires C, 63.40; H, 5.73; N 11.38%).
2-(Formyl-salicyl-methylidene)hexahydropyrimidine (7d): Colorless crystalline solid (219 mg, 89%), mp 176-177 °C (acetone). UV (MeOH): 332, 262.5, 219 nm. IR (KBr): 3400 (b), 3090 (b), 2755, 1656 (HC=O), 1642 (C=O), 1604, 1572, 1401, 1365, 1338, 1326, 1302, 1273, 1245, 1224, 1147 cm-1: 1H NMR (200 MHz, DMSO-d 6): δ = 10.64 (br s, 2 H, NH and OH), 9.83 (br s, 1 H, NH), 9.13 (s, 1 H, CHO), 7.37 (dt, 1 H, J = 7.02, 1.51 Hz, C4′-H), 7.24 (br d, 1 H, J = 6.42 Hz, C6′-H), 7.07-6.99 (m, 2 H, C5′-H and C3′-H), 3.61 (b, 4 H, N-CH2 × 2), 2.13-2.08 (m, 2 H, -CH2). 13C NMR (50 MHz, DMSO-d 6): δ = 194.25 (C=O), 189.70 (CHO), 158.82 (C2), 153.70 (C2′), 130.10 (CH), 128.98 (C1′), 128.80 (CH), 119.25 (CH), 115.80 (CH), 100.51 (quat.), 37.78 (N-CH2), 19.06 (CH2). MS: m/z (%) = 246 (15) [M+], 228 (69) [M+ - 18], 172 (42), 108 (100), (Found: C, 63.26; H, 5.48; N, 11.11. C13H14N2O3 requires C, 63.40; H, 5.73; N 11.38%).
2-[(5-Chlorosalicyl)-formyl-methylidene]hexahydro-pyrimidine (7e): Colorless crystalline solid, mp 169-171 °C (acetone). UV (CHCl3): 330, 269.5, 251 nm. IR (KBr): 3490 (b), 3100 (b), 1657 (HC=O), 1635 (C=O), 1611, 1535, 1468, 1430, 1418, 1358, 1322, 1282, 1260, 1240, 1215 cm-1. 1H NMR (200 MHz, CDCl3-DMSO-d 6, 8:2): δ = 10.46 (br, 2 H, NHs), 9.02 (s, 1 H, CHO), 7.28-7.01 (m, 2 H, arom.-Hs), 6.80 (d, 1 H, J = 8.58 Hz, C3′-H), 3.44-3.41 (m, 4 H, N-CH2 × 2), 2.00-1.93 (m, 2 H, -CH2). MS: m/z (%) = 282 [(M+ + 2 (37Cl)], 281 (1.9), 280 (10)[M+ (35Cl)], 279 (35), 264 (8), 262 (31), 254 (14), 252 (30), 247 (5), 246 (3), 245 (18), 152 (4), 150 (18), 172 (5), 171 (23), 169 (70), 99 (15), 98 (100), 97 (14), (Found: C, 55.84; H, 4.81; N, 9.63. C13H13N2O3Cl requires C, 55.62; H, 4.67; N, 9.98%).
2-[Formyl-(5-methylsalicyl)-methylidene]hexahydro-pyrimidine (7f): Creamy yellow crystalline solid, mp 160-162 °C (acetone). UV (CHCl3): 332, 307, 271.5, 256.5 nm. IR (KBr): 3360 (b), 3040 (b), 1658 (HC=O), 1633 (C=O), 1606, 1571, 1470, 1451, 1390, 1361, 1280 cm-1. 1H NMR (200 MHz, CDCl3): δ = 10.51 (br, 2 H, NHs), 9.35 (s, 1 H, CHO), 7.14-7.08 (m, 2 H, arom -Hs), 6.84 (d, 1 H, J = 8.26 Hz, C3′-H), 3.48-3.41 (s, 4 H, N-CH2 × 2), 2.24 (s, 3 H, Ar-CH3), 2.05-1.97 (m, 2 H, CH2). 13C NMR (50 MHz, CDCl3): δ = 196.66 (C=O), 189.78 (CHO), 159.99 (C2), 156.83 (C2′), 133.41 (CH), 131.71 (CH), 127.11 (C1′), 122.16 (C5′), 117.11 (CH), 100.06 (quat.), 37.81 (N-CH2), 20.41 (Ar-CH3), 19.20 (CH2). MS: m/z (%) = 260 (20) [M+], 259 (18), 169 (91), 111 (76), 83 (49), 71 (100), (Found: C, 64.28; H, 5.96; N, 10.99. C14H16N2O3 requires C, 64.60; H, 6.20; N 10.76%). -
8b
Jackman LM.Timothy F. J. Am. Chem. Soc. 1975, 97: 2811
References
General Procedure for Reactions of 2-( N -Methyl-anilino)-3-formylchromones (3a-c) with Aliphatic Diamines (Ethylenediamine and 1,3-Diaminopropane): 2-(N-Methylanilino)-3-formylchromones (3a-c, 1.0 mmol) were dissolved in acetonitrile-water (80:20, 50 mL) at reflux and the solutions of diamines (1.0 mmol) in acetonitrile (5 mL) were added to the above solutions. The contents were heated at reflux for 2 h, after which the solvent was evaporated under vacuum. The crude products were directly crystallized and recrystallized from acetone.