References
<A NAME="RD22202ST-1">1</A>
Biard JF.
Guyot S.
Roussakis C.
Verbist JF.
Vercauteren J.
Weber JF.
Boukef K.
Tetrahedron
Lett.
1994,
35:
2691
<A NAME="RD22202ST-2">2</A>
Juge M.
Grimaud N.
Biard JF.
Sauviat MP.
Nabil M.
Verbist JF.
Petit JY.
Toxicon
2001,
39:
1231
<A NAME="RD22202ST-3A">3a</A>
Pearson WH.
Ren Y.
J.
Org. Chem.
1999,
64:
688
<A NAME="RD22202ST-3B">3b</A>
Werner KM.
De los Santos JM.
Weinreb SM.
Shang M.
J.
Org. Chem.
1999,
64:
4865
<A NAME="RD22202ST-3C">3c</A>
Abe H.
Aoyagi S.
Kibayashi C.
J.
Am. Chem. Soc.
2000,
122:
4583
<A NAME="RD22202ST-3D">3d</A>
Maeng JH.
Funk RL.
Org.
Lett.
2001,
3:
3511
<A NAME="RD22202ST-4">4</A>
Sun P.
Sun C.
Weinreb SM.
J.
Org. Chem.
2002,
67:
4337
<A NAME="RD22202ST-5A">5a</A>
Golden JE.
Aubé J.
Chemtracts
1999,
12:
1026
<A NAME="RD22202ST-5B">5b</A>
Snider BB.
Lin H.
J. Am. Chem.
Soc.
1999,
121:
7778
<A NAME="RD22202ST-5C">5c</A>
Scheffler G.
Seike H.
Sorensen EJ.
Angew. Chem.
Int. Ed.
2000,
39:
4593
<A NAME="RD22202ST-5D">5d</A>
Ousmer M.
Braun NA.
Ciufolini MA.
Org. Lett.
2001,
3:
765
<A NAME="RD22202ST-5E">5e</A>
Funk RL.
Maeng JH.
Org.
Lett.
2001,
3:
1125
<A NAME="RD22202ST-5F">5f</A>
Wardrop DJ.
Zhang W.
Org. Lett.
2001,
3:
2353
<A NAME="RD22202ST-6A">6a</A>
Snider BB.
Lin H.
Org.
Lett.
2000,
2:
643
<A NAME="RD22202ST-6B">6b</A>
Wardrop DJ.
Basak A.
Org. Lett.
2001,
3:
1053
<A NAME="RD22202ST-6C">6c</A>
Mizutani H.
Takayama J.
Soeda Y.
Honda T.
Tetrahedron Lett.
2002,
43:
2411
<A NAME="RD22202ST-6D">6d</A>
Nagumo S.
Nishida A.
Yamazaki C.
Matoba A.
Murashige K.
Kawahara N.
Tetrahedron
2002,
58:
4917
<A NAME="RD22202ST-7A">7a</A>
Kuehne ME.
Horne DA.
J. Org. Chem.
1975,
40:
1287
<A NAME="RD22202ST-7B">7b</A>
Fujimoto RA.
Boxer J.
Jackson RH.
Simke JP.
Neale RF.
Snowhill EW.
Barbaz BJ.
Williams M.
Sills MA.
J.
Med. Chem.
1989,
32:
1259
<A NAME="RD22202ST-7C">7c</A>
Kawase M.
Kitamura T.
Kikugawa Y.
J.
Org. Chem.
1989,
54:
3394
<A NAME="RD22202ST-7D">7d</A>
Sawamura M.
Nakayama Y.
Tang W.-M.
Ito Y.
J. Org. Chem.
1996,
61:
9090
<A NAME="RD22202ST-7E">7e</A>
Bagley MC.
Oppolzer W.
Tetrahedron:
Asymmetry
2000,
11:
2625
<A NAME="RD22202ST-8A">8a</A>
Jones RCF.
Patience JM.
J. Chem. Soc., Perkin Trans. 1
1990,
2350
<A NAME="RD22202ST-8B">8b</A>
Gill GB.
James GD.
Oates KV.
Pattenden G.
J.
Chem. Soc., Perkin Trans. 1
1993,
2567
<A NAME="RD22202ST-9">9</A>
Reuschling D.
Pietsch H.
Linkies A.
Tetrahedron
Lett.
1978,
615
<A NAME="RD22202ST-10A">10a</A>
Casiraghi G.
Rassu G.
Synthesis
1995,
607
<A NAME="RD22202ST-10B">10b</A>
Rassu G.
Carta P.
Pinna L.
Battistini L.
Zanardi F.
Acquotti D.
Casiraghi G.
Eur. J.
Org. Chem.
1999,
6:
1395
<A NAME="RD22202ST-10C">10c</A>
Rassu G.
Zanardi F.
Battistini L.
Casiraghi G.
Chem. Soc. Rev.
2000,
29:
109
<A NAME="RD22202ST-11">11</A>
Jones RCF.
Bates AD.
Tetrahedron
Lett.
1986,
27:
5285
<A NAME="RD22202ST-12">12</A>
The following experimental
procedure for conversion of 3b to 4 applies: The substrate 3b (0.73g,
3mmol) was dissolved in anhyd THF (30 mL) under N2 and
cooled to -78 °C. A solution of n-BuLi
in hexane (2.25 mL of a 1.6 M solution, 3.6 mmol, 1.2 equiv) was
added dropwise. After stirring for 30 min at -78 °C
TMSCl (0.57 mL, 4.5 mmol, 1.5 equiv) was added dropwise and the
solution was stirred for a further 30 min at -78 °C.
Trimethyl orthoformate (1.00 mL, 9.0 mmol, 3 equiv) was then added,
followed by BF3·OEt2 (0.57 mL, 4.5
mmol, 1.5 equiv). The reaction was allowed to slowly warm to -20 °C
over 2 h. Sat. NaHCO3 solution was then added and the
THF was removed by evaporation. The remaining aqueous layer was
extracted with 3 portions of EtOAc. The organic layers were combined,
dried and concentrated to give an oily residue. The product was isolated
by column chromatography to give the acetal as an oil that slowly
crystallised as a colourless, waxy solid 4 (0.699
g, 2.20 mmol) in 88% yield based on recovered starting
material (0.125 g, 0.51 mmol). Data for 4:
IR: νmax (CH2Cl2) = 3019,
1669, 1640, 1346 cm-1. Found: M+ (+ H), 318.17144.
C18H24NO4 requires M+:
318.17053. 1H NMR (400 MHz, CDCl3): δ = 2.37
(1 H, ddt, J = 1.1, 7.7, 14.7
Hz, CH
2), 2.54 (1 H, dd, J = 6.6, 14.7 Hz, CH
2), 3.27 (3 H, s, OCH
3), 3.32 (3 H, s, OCH
3), 3.75 (3 H, s, OCH
3), 4.21 (1 H, s, OCHO), 4.61 (2 H, s, PhCH
2),
4.84 (2 H, m, CH=CH
2), 5.12
(1 H, s, H-3), 5.18 (1 H, m, CH=CH2),
7.15-7.38 (5 H, m, aromatic). 13C
NMR (100 MHz, CDCl3): δ = 33.8 (CH2), 43.6 (PhCH2), 57.8, 57.9 and 58.0
(3 × OCH3),
71.8 (C-5), 95.2 (C-3), 107.6 (OCHO),
118.6 (CH=CH2), 126.6,
128.0 and 128.5 (aromatic), 130.9 (CH=CH2),
139.6 (aromatic), 172.2 (C-4), 174.5 (C=O).
<A NAME="RD22202ST-13">13</A>
Sanford MS.
Ulman M.
Grubbs RH.
J.
Am. Chem. Soc.
2001,
123:
749
<A NAME="RD22202ST-14">14</A>
Fischer R,
Graff A,
Bretschneider T,
Erdelen C,
Drewes MW, and
Feucht D. inventors; WO Patent 2001023354.
<A NAME="RD22202ST-15">15</A>
Laffan DP.
Baenziger M.
Duc L.
Evans AR.
McGarrity JF.
Meul T.
Helv. Chim.
Acta
1992,
75:
892
<A NAME="RD22202ST-16">16</A>
Prepared from the phosphonium bromide
in ref.
[17b]
by treatment
with KOH.
Prepared from the bromide:
<A NAME="RD22202ST-17A">17a</A>
Kozikowski AP.
Stein PD.
J.
Org. Chem.
1984,
49:
2301
<A NAME="RD22202ST-17B">17b</A>
Ziegler FE.
Klein SI.
Pati UK.
Wang T.-F.
J.
Am. Chem. Soc.
1985,
107:
2730
<A NAME="RD22202ST-18">18</A>
Hoffman RV.
Bishop RD.
Fitch PM.
Hardenstein R.
J. Org.
Chem.
1980,
45:
917
<A NAME="RD22202ST-19">19</A>
Yoda H.
Kitayama H.
Katagiri T.
Takabe K.
Tetrahedron: Asymmetry
1993,
4:
1455
<A NAME="RD22202ST-20A">20a</A>
Aubé J.
Milligan GL.
J. Am. Chem. Soc.
1991,
113:
8965
<A NAME="RD22202ST-20B">20b</A>
Data for the trans diastereomer 11a, (7aS
*,11aS
*)-Decahydro-3H-pyrrolo[2,1-j]quinolin-3-one:
IR: νmax (CH2Cl2) = 2935,
2864,1674, 1418 cm-1. Found: M+, 193.14725.
C12H19NO requires M+:
193.14666. 1H NMR (400 MHz, CDCl3): δ = 1.11-1.39
(4 H, m, CH
2), 1.41-1.87 (10
H, m, CH
2), 1.93 (1 H, dd, J = 7.7, 12.3 Hz, CH2),
2.20 (1 H, dd, J = 8.8, 16.5
Hz, H-2), 2.49 (1 H, dddd, J = 0.9,
7.9, 12.6, 16.5 Hz, H-2), 2.77 (1 H, dddd, J = 1.1,
7.0, 11.2, 13.7 Hz, H-5), 3.88 (1 H, dd, J = 8.4,
13.7 Hz, H-5). 13C NMR (75 MHz, CDCl3): δ = 21.4
(CH2), 22.5 (CH2),
23.5 (CH2), 24.9 (CH2), 26.0 (CH2),
27.4 (CH2), 30.6 (CH2), 33.3 (C-5), 33.8 (C-2),
42.1 (C-7a), 64.1 (C-11a), 175.9 (C=O).
Several papers have appeared on
asymmetric synthesis of 5,5-disubstituted pyrrolidin-2-ones:
<A NAME="RD22202ST-21A">21a</A>
Uno H.
Baldwin JE.
Russell AT.
J. Am. Chem. Soc.
1994,
116:
2139
<A NAME="RD22202ST-21B">21b</A>
Nagasaka T.
Imai T.
Heterocycles
1995,
41:
1927
<A NAME="RD22202ST-21C">21c</A>
Nagasaka T.
Imai T.
Chem. Pharm. Bull.
1997,
45:
36
<A NAME="RD22202ST-21D">21d</A>
Langlois N.
Choudhury PK.
Tetrahedron Lett.
1999,
40:
2525
<A NAME="RD22202ST-21E">21e</A>
Schuch CM.
Pilli RA.
Tetrahedron: Asymmetry
2000,
11:
753
<A NAME="RD22202ST-21F">21f</A>
Choudhury PK.
Le Nguyen B.
Langlois N.
Tetrahedron Lett.
2002,
43:
463