References
1a
Griengl H.
Hickel A.
Johnson DV.
Kratky C.
Schmidt M.
Schwab H.
Chem.
Commun.
1997,
1933
1b
Effenberger F.
Angew.
Chem., Int. Ed. Engl.
1994,
33:
1555
1c
North M.
Synlett
1993,
807
1d
Herranz R.
Castro-Pichel J.
García-López T.
Synthesis
1989,
703
2
Gregory RJH.
Chem. Rev.
1999,
99:
3649
3a
Gröger H.
Capan E.
Barthuber A.
Vorlop K.-D.
Org. Lett.
2001,
3:
1969
3b
Hanefeld U.
Straathof AJJ.
Heijnen JJ.
J. Mol. Catal. B: Enzym.
2001,
11:
213
3c
Ognyanov VI.
Datcheva VK.
Kyler KS.
J. Am. Chem. Soc.
1991,
113:
6992
Recent examples include:
4a
Gama A.
Flores-López LZ.
Aguirre G.
Parra-Hake M.
Somanathan R.
Walsh PJ.
Tetrahedron:
Asymmetry
2002,
13:
149
4b
Liang S.
Bu XR.
J. Org. Chem.
2002,
67:
2702
4c
Aspinall HC.
Greeves N.
J. Orgmet.
Chem.
2002,
647:
151
4d
Wang ZG.
Fetterly B.
Verkade JG.
J. Orgmet. Chem.
2002,
646:
161
4e
Tian S.-K.
Deng L.
J. Am. Chem. Soc.
2001,
123:
6195
4f
Brunel JM.
Legrand O.
Buono G.
Tetrahedron: Asymmetry
1999,
10:
1979
4g
Hwang CD.
Hwang DR.
Uang BJ.
J. Org. Chem.
1998,
63:
6762
4h
Abiko A.
Wang G.-Q.
Tetrahedron
1998,
54:
11405
4i
Zi GF.
Yin CL.
J. Mol. Catal. A: Chem.
1998,
132:
L1-L4
4j
Mori M.
Imma H.
Nakai T.
Tetrahedron
Lett.
1997,
38:
6229
4k
Iovel I.
Popelis Y.
Fleisher M.
Lukevics E.
Tetrahedron: Asymmetry
1997,
8:
1279
General review of bifunctional catalysts:
5a
Rowlands GJ.
Tetrahedron
2001,
57:
1865
5b Recent examples: Casas J.
Nájera C.
Sansano JM.
Saá JM.
Org.
Lett.
2002,
4:
2589
5c Also see: Gröger H.
Chem.-Eur. J.
2001,
7:
5247
5d Examples on the related
addition to imines: Liu B.
Feng X.
Chen F.
Zhang G.
Cui X.
Jiang Y.
Synlett
2001,
1551
5e Also see: Corey EJ.
Wang Z.
Tetrahedron
Lett.
1993,
34:
4001
6a
Shen Y.
Feng X.
Li Y.
Zhang G.
Jiang Y.
Synlett
2002,
793
6b
Shen Y.
Feng X.
Zhang G.
Jiang Y.
Synlett
2002,
1353
Recent examples and references therein:
7a
Masumoto S.
Yabu K.
Kanai M.
Shibasaki M.
Tetrahedron Lett.
2002,
43:
2919
7b
Kanai M.
Hamashima Y.
Takamura M.
Shibasaki M.
J. Synth. Org. Chem. Jpn.
2001,
59:
766
7c
Shibasaki M.
Kanai M.
Chem. Pharm. Bull.
2001,
49:
511
8a
Deng H.
Isler MR.
Snapper ML.
Hoveyda AH.
Angew. Chem. Int. Ed.
2002,
41:
1009
8b Mechanistic studies on
the related addition to imines: Josephsohn NS.
Kuntz KW.
Snapper ML.
Hoveyda AH.
J.
Am. Chem. Soc.
2001,
123:
11594
9a
Belokon’ YN.
Gutnov AV.
Moskalenko MA.
Yashkina LV.
Lesovoy DE.
Ikonnikov NS.
Larichev VS.
North M.
Chem.
Commun.
2002,
244
9b
Belokon" YN.
Green B.
Ikonnikov NS.
North M.
Parsons T.
Tararov VI.
Tetrahedron
2001,
57:
771
10a
Pelotier B.
Anson MS.
Campbell IB.
Macdonald SJF.
Priem G.
Jackson RFW.
Synlett
2002,
1055
10b
Massa A.
Lattanzi A.
Siniscalchi FR.
Scettri A.
Tetrahedron: Asymmetry
2001,
12:
2775
10c
Brinksma J.
La Crois R.
Feringa BL.
Donnoli MI.
Rosini C.
Tetrahedron
Lett.
2001,
42:
4049
10d
Procter DJ.
J. Chem. Soc., Perkin Trans. 1
2001,
335
11a
Cogan DA.
Liu G.
Ellman J.
Tetrahedron
1999,
55:
8883
11b
Huang ZC.
Liao DZ.
Zhang RH.
Zhang XL.
Huang TS.
Wang HM.
Polyhedron
1996,
15:
981
11c
Carreño MC.
Chem. Rev.
1995,
95:
1717
12a
Ordoñez M.
Guerrero de la Rosa V.
Labastida V.
Llera JM.
Tetrahedron: Asymmetry
1996,
7:
2675
12b
Owens TD.
Hollander FJ.
Oliver AG.
Ellman JA.
J.
Am. Chem. Soc.
2001,
123:
1539
13
Priego J.
Mancheño OG.
Cabrera S.
Carretero JC.
J. Org.
Chem.
2002,
67:
1346
14a
Watanabe K.
Hirasawa T.
Hiroi K.
Chem. Pharm. Bull.
2002,
50:
372
14b
Hiroi K.
Watanabe K.
Abe I.
Koseki M.
Tetrahedron Lett.
2001,
42:
7617
14c
Hiroi K.
Suzuki Y.
Abe I.
Kawagishi R.
Tetrahedron
2000,
56:
4701
15a
Priego J.
Mancheño OG.
Cabrera S.
Carretero JC.
Chem. Commun
2001,
2026
15b
Chelucci G.
Berta D.
Saba A.
Tetrahedron
1997,
53:
3843
15c
Carreño MC.
Ruano JLG.
Maestro MC.
Cabrejas LMM.
Tetrahedron: Asymmetry
1993,
4:
727
16
Gritzner G.
J.
Mol. Liq.
1997,
73-74:
487
17a
Hellwig J.
Belser T.
Müller JFK.
Tetrahedron
Lett.
2001,
42:
5417
17b
Denmark SE.
Wynn T.
J. Am. Chem. Soc.
2001,
123:
6199
17c
Denmark SE.
Stavenger RA.
Acc.
Chem. Res.
2000,
33:
432
18a
Iwasaki F.
Onomura O.
Mishima K.
Maki T.
Matsumura Y.
Tetrahedron Lett.
1999,
40:
7507
18b
Iseki K.
Mizuno S.
Kuroki Y.
Kobayashi Y.
Tetrahedron Lett.
1998,
39:
2767
Examples of the sila-Pummerer rearrangement:
19a
Bhupathy M.
Cohen T.
Tetrahedron Lett.
1987,
28:
4793
19b
Iwao M.
Heterocycles
1994,
38:
45
19c Examples of silicon initiated
Pummerer reaction: Magnus P.
Mitchell IS.
Tetrahedron Lett.
1998,
39:
9131
19d Also see: Padwa A.
Waterson AG.
Tetrahedron
2000,
56:
10159
20
Bolm C.
Weickhardt K.
Zehnder M.
Glasmacher D.
Helv. Chim. Acta
1991,
74:
717
21a
Helmchen G.
Pfaltz A.
Acc.
Chem. Res.
2000,
33:
336
21b
Johnson JS.
Evans DA.
Acc.
Chem. Res.
2000,
33:
325
21c
Ghosh AK.
Mathivanan P.
Cappiello J.
Tetrahedron: Asymmetry
1998,
9:
1
22
McKennon MJ.
Meyers AI.
Drauz K.
Schwarm M.
J. Org. Chem.
1993,
58:
3568
23
Aggarwal VK.
Bell L.
Coogan MP.
Jubault P.
J. Chem. Soc., Perkin Trans.
1
1998,
2037
24 Nitrile 3 was
accessible from 3,5-di-tert-butyl-2-hydroxybenzaldehyde
in 3 steps.
25
Hayashi M.
Inoue T.
Miyamoto Y.
Oguni N.
Tetrahedron
1994,
50:
4385
26
Pastuszak JJ.
Chimiak A.
J. Org. Chem.
1981,
46:
1868
27 Sulfoxide (S
S)-7: 1H NMR (300 MHz,
CDCl3) 12.21 (1 H, br s,), 7.53 (1 H, d, J = 1.5 Hz), 7.44 (1 H, d, J = 2.5 Hz), 4.93-4.82
(1 H, m), 4.61 (1 H, t, J = 9.5
Hz), 4.29 (1 H, t, J 9.0 Hz), 2.84 (1 H, dd, J = 12.5
Hz, 6.5 Hz), 2.68 (1 H, dd, J = 12.5
Hz, 7.5 Hz), 1.42 (9 H, s), 1.28 (9 H, s), 1.26 (9 H, s); 13C
NMR (75 MHz, CDCl3) 167.7 (C), 157.3 (C), 140.7 (C), 137.0
(C), 128.9 (CH), 122.8 (CH), 109.7 (C), 71.9 (CH2), 62.2
(CH), 53.8 (C), 51.4 (CH2), 35.5 (C), 34.7 (C), 31.9 (CH3),
29.8 (CH3), 23.2 (CH3); MS (EI) m/z = 393, 337, 322, 274,
250, 217, 205, 149, 57.
Sulfoxide (R
S)-7: 1H NMR (300 MHz,
CDCl3) 12.15 (1 H, s), 7.52 (1 H, d, J = 2.5
Hz), 7.42 (1 H, d, J = 2.5 Hz),
4.91-4.81 (1 H, m), 4.58 (1 H, t, J = 9.0
Hz), 4.40 (1 H, dd, J = 9.0 Hz,
7.0 Hz), 3.00 (1 H, dd, J = 12.5
Hz, 3.5 Hz), 2.59 (1 H, dd, J = 12.5
Hz, 10.0 Hz), 1.40 (9 H, s), 1.27 (9 H, s), 1.25 (9 H, s); 13C
NMR (75 MHz, CDCl3) 167.9 (C), 157.2 (C), 140.7 (C),
137.1 (C), 128.9 (CH), 122.7 (CH), 109.5 (C), 71.0 (CH2),
61.4 (CH), 54.1 (C), 51.1 (CH2), 35.5 (C), 34.7 (C),
31.9 (CH3), 29.8 (CH3), 23.1 (CH3).
28 Typical procedure: Ti(i-PrO)4 (0.013 mL, 0.04 mmol,
0.09 equiv) was added to a solution of (S
S)-7 (0.018 g, 0.05 mmol, 0.1 equiv) in CH2Cl2 (0.78
mL) at room temperature. The resultant pale yellow solution was
stirred at room temperature for 1 hour whereupon it was cooled to -78 °C. Benzaldehyde
(0.049 mL, 0.47 mmol, 1.0 equiv) was added and the solution stirred
for a further 30 min. TMSCN (0.095 mL, 0.71 mmol, 1.5 equiv) was
then added and the reaction vessel transferred to a -84 °C
freezer for 60 h. HCl(aq) (3 M; 3 mL) was added and
the mixture vigorously stirred at room temperature for 2 h. The
layers were separated and the aqueous phase extracted with CH2Cl2 (3 × 5
mL). The combined organic layers were dried (MgSO4) and concentrated.
The cyanohydrin 9 was isolated by column chromatography
(petroleum ether:ether, 3:1).
29 At -84 °C there
was no reaction between benzaldehyde and TMSCN in the presence of
either 10% Ti(i-PrO)4 or
10% Ti(i-PrO)4 + 10% DMSO
after 48 h. On warming to -20 °C complete reaction
was observed in the presence of just 10% Ti(i-PrO)4 in 12 h whilst the
reaction had only gone to 60% completion in the presence
of 10% Ti(i-PrO)4 + 10% DMSO over
the same period. Again this indicates that the ligand is essential
for activity. The decrease in the rate of reaction in the presence
of DMSO could possibly be the result of the formation of a coordinatively
saturated octahedral complex with resultant loss in Lewis acidity.
This would require two equivalents of DMSO per titanium centre thus
resulting in only 5% active catalyst being present. Stoichiometry
of the catalyst has already been shown to effect the rate (Table
[1]
; entry 6).
30 Three aluminium complexes were studied
in cyanosilylation reaction of benzaldehyde. One formed from 2,2′-biphenol gave
58% conversion, one with a phenyl sulfone substituent in
the ortho position of 2,2′-biphenol
gave 75% conversion whilst the phenyl sulfoxide substituted
2,2′-biphenol gave 92% conversion. This suggests
that the sulfoxide is activating the TMSCN and that it is not purely
an electronic effect making the aluminium centre more Lewis acidic. Work
to convert this to a chiral system is currently underway.
31
Braunstein P.
Naud F.
Angew. Chem. Int. Ed.
2001,
40:
680
32 The use of sulfoxides as Lewis
base catalysts for allylations: Kentish-Barnes W.
D.
Phil. Thesis
The University of Sussex;
UK:
2002.