References
1 For a review see: Hartung J.
Gottwald T.
pehar K.
Synthesis
2002.
p.1469 ;
and references cited therein
2
Beckwith ALJ.
Hay BP.
J.
Am. Chem. Soc.
1988,
110:
4415
3
Hartung J.
Gallou F.
J. Org. Chem.
1995,
60:
6706
4a
Pasto DJ.
Cottard F.
Tetrahedron
Lett.
1994,
35:
4303
4b
Horner JH.
Choi S.-Y.
Newcomb M.
Org. Lett.
2000,
2:
3369
4c
Petrovic G.
Saicic RN.
Cekovic Z.
Synlett
1999,
635
5
Hartung J.
Hiller M.
Schwarz M.
Svoboda I.
Fuess H.
Liebigs
Ann. Chem.
1996,
2091
6
Kim S.
Lee TA.
Song Y.
Synlett
1998,
471
7
Kim S.
Lim CJ.
Song S.-E.
Kang H.-Y.
Synlett
2001,
688
8
Hartung J.
Eur.
J. Org. Chem.
2001,
619
9
Hartung J.
Schwarz M.
Org. Synth.
2002,
79:
228
10
Hartung J.
Schwarz M.
Svoboda I.
Fuess H.
Duarte M.-T.
Eur.
J. Org. Chem.
1999,
1275
11
Hartung J.
Kneuer R.
pehar K.
Chem.
Commun.
2001,
799
12 Hartung, J.; Gottwald, T.; pehar,
K. unpublished results.
13 Satisfactory analytical data were
obtained for all new compounds in this study: N-hydroxy-4-methyl-5-(p-anisyl)thiazole-2(3H)thione,
thiazolethiones 1, 3a-d, rac-4, 7, 9, and products 6, 8 and 10 from
alkoxyl radical reactions.
14
N-Ethoxy-4-methyl-5-(p-methoxyphenyl)thiazole-2(3H)thione(3a):
A suspension of N-hydroxy-4-methyl-5-(p-anisyl)thiazole-2(3H)thione
(279 mg, 1.10 mmol) in CH3OH (2 mL) was treated with
a solution of tetraethyl-ammonium hydroxide in CH3OH
(0.73 mL, 1.5 M, 1.10 mmol). The solvent
was evaporated and the remaining salt was freeze-dried. The residue
was taken up in dry DMF (2 mL) and treated with ethyl iodide (2a, 156 mg, 0.07 mL, 1.00 mmol). The reaction
mixture was stirred for 12 h at 20 °C. Afterwards,
H2O (7 mL) and Et2O (5 mL) were added and
the phases were separated. The aq phase was extracted with Et2O
(2 × 5 mL). The combined organic phases were dried (MgSO4)
and concentrated in vacuo to provide an oil which was crystallized
from CH3OH to furnish 180 mg (0.64 mmol, 64%)
of thione 3a: pale yellow solid, mp 133 °C, Rf = 0.34 [petroleum
ether/Et2O = 2:1,
(v/v)]. 1H NMR (400 MHz, CDCl3): δ = 1.46
(t, 3 H, 3
J = 7.1 Hz), 2.33 (s,
3 H), 3.84 (s, 3 H), 4.53 (q, 2 H, 3
J = 7.1 Hz),
6.94 (mc, 2 H), 7.24 (mc, 2 H). 13C
NMR (100 MHz, CDCl3): δ = 12.1,
13.2, 55.4, 72.2, 114.6, 119.3, 122.6, 129.9, 132.2, 159.9, 178.8.
UV/Vis (EtOH): λmax (lg ε) = 334
nm (4.46), 253 (3.85), 226 (4.20); MS (EI, 70 eV): m/z (%) = 281.1
(68) [M+], 237.0 (100) [C11H11NOS2
+],
178.1 (31) [C10H10OS+],
146.1 (36) [C10H10O+],
77.0 (18) [C6H5
+],
39.9 (12) [C3H4
+]. C13H15NO2S2 (281.39):
calcd C, 55.49; H, 5.37; N, 4.98; S, 22.79. Found: C, 55.29; H,
5.52; N, 4.92; S, 22.32.
15
Parr PG.
Pearson RG.
J. Am. Chem. Soc.
1983,
105:
7512
16 For a review see: Walter W.
Schaumann E.
Synthesis
1971,
111
17
Barton DHR.
Crich D.
Kretzschmar G.
J. Chem. Soc., Perkin Trans. 1
1986,
39
18
Hartung J.
Hiller M.
Schmidt P.
Chem.-Eur.
J.
1996,
2:
1014
19
Hartung J.
Kopf TM.
Kneuer R.
Schmidt P.
C. R. Acad. Sci.
2001,
649
20
Chittenden GJF.
Carbohydr. Res.
1992,
242:
297
21 Synthesis of 1,6-cis-8-bromomethyl-7-oxabicyclo[4.3.0]nonane rac-(5):
[19]
(i)Preparative scale.
A degassed solution of rac-N-(cis-2-allylcyclohexyloxy)-4-methyl-5-(p-methoxyphenyl)thiazole-2(3H)thione rac-(4) (188 mg, 0.50 mmol) and BrCCl3 (934
mg, 4.71 mmol, 0.46 mL) in dry benzene (3 mL) was irradiated for
30 min in a Rayonet® photoreactor equipped with
350 nm-light bulbs. The solvent was partially removed and the residue
was purified by column chromatography [SiO2,
solvent: petroleum ether/Et2O = 5:1
(v/v)] to provide 76.7 mg of bromomethyl-substituted
tetrahydrofuran rac-5 as
colorless oil (0.35 mmol, 70%, 6,8-cis:6,8-trans = 72:28);
Rf = 0.77 [SiO2,
solvent: petroleum ether/Et2O = 5:1
(v/v)].(ii) NMR-Experiment: A degassed solution
of thiazolethione rac-(4) (18.8
mg, 0.05 mmol) and BrCCl3 (93.4 mg, 0.47 mmol, 0.05 mL)
in dry C6D6 (0.28 mL) was irradiated for 15
min with visible light (Osram® Power Star HQI/D,
250 W). After completion of the photoreaction (TLC-control), the
yield of rac-5 (8.98
mg, 41.0 µmol, 82%, 6,8-cis:
6,8-trans = 72:28) was
determined by integrating its NMR resonances versus added anisole
as internal standard in C6D6 (0.5 mL).
22 4-Methyl-5-(p-anisyl)-2-(trichloromethylsulfanyl) thiazole(6): Rf = 0.77 [SiO2,
petroleum ether/acetone = 4:1, (v/v)]. 1H
NMR (250 MHz, CDCl3): δ = 2.59
(s, 3 H), 3.86 (s, 3 H), 6.99 (d, 2 H, J = 7.5 Hz), 7.41 (d,
2 H, J = 7.5
Hz). 13C NMR (63 MHz, CDCl3): δ = 16.3,
55.4, 114.4, 123.0, 130.6, 141.6, 150.3, 160.1, 182.5. UV/Vis
(CH3CN): λmax
(lg ε) = 324
nm (4.33). MS (EI, 70 eV): m/z (%) = 354.8
(15) [M+], 236.0 (100) [C11H10NOS2
+],
177.0 (42) [C10H9NOS2
+]. C12H10Cl3NOS2 (354.70):
calcd C, 40.64; H, 2.84; N, 3.95; S, 18.08. Found: C, 40.47; H,
2.77; N, 3.75; S, 17.52. HR-MS: calcd 352.9269, found 352.9269.
For reviews and related work on
alkoxyl radical induced β-C,C cleavages:
23a
Kalvoda J.
Heusler K.
Synthesis
1985,
501
23b
Tsang R.
Fraser-Reid B.
J. Am. Chem. Soc.
1986,
108:
8102
23c
Beckwith ALJ.
Hay BP.
Williams GM.
J. Chem. Soc., Chem.
Commun.
1989,
1202
23d
Curran DP. In
Comprehensive Organic
Synthesis
Vol. 4:
Trost BM.
Fleming I.
Pergamon
Press;
New York:
1991.
p.812-818
23e
Dowd P.
Zhang W.
Chem. Rev.
1993,
93:
2091
23f
Batsanov AS.
Begley MJ.
Fletcher RJ.
Murphy JA.
Sherburn MS.
J. Chem. Soc., Perkin
Trans. 1
1995,
1281
23g
Francisco CG.
Martin CG.
Suárez E.
J. Org. Chem.
1998,
63:
2099
23h
Wilsey S.
Dowd P.
Houk KN.
J.
Org. Chem.
1999,
64:
8801
23i
Hartung J.
Gottwald T.
Kneuer R.
Synlett
2001,
749
23j
Suárez E.
Rodriguez MS. In
Radicals in Organic Synthesis
Vol.
2:
Renaud P.
Sibi MP.
Wiley-VCH;
Weinheim:
2001.
p.440-454
24a
Barton DHR.
Beaton JM.
Geller LE.
Pechet MM.
J. Am. Chem. Soc.
1961,
83:
4076
24b
Freidlina RK.
Terent’ev AB. In Advances
in Free-Radical Chemistry
Vol. 6:
Williams GH.
Heyden;
London:
1980.
p.1-63
24c
Crich D.
Huang X.
Newcomb M.
J.
Org. Chem.
2000,
65:
523